期刊文献+

基于特征表示的行人再识别技术综述 被引量:2

Survey of pedestrian re-identification with feature representation
下载PDF
导出
摘要 行人再识别是智能视频监控中的一项关键任务,是近年来计算机视觉领域中一直备受关注的研究热点,适用于安防以及公共场所寻人等技术领域。特征提取是行人再识别技术中存在的核心问题之一。对现有的基于特征表示的行人再识别方法进行评述,并分析其中代表性方法的优缺点;介绍了常用行人数据库的特点;然后总结现阶段行人再识别研究所面临的挑战。最后对行人再识别技术的未来发展方向进行了展望。 Pedestrian re-identification is a key task in intelligent video surveillance and a major concernin the field ol computer vision in recent years. A nd the technique can be applied in different importantapplications,e. g. security and finding someone in the public place. Feature extraction is one of the coreissues of pedestrian re-identification technique,this paper reviews the existing methods based on featurerepresentation. According to the research,the advantages and disadvantages of different typical methodsare discussed; it describes the characteristics of commonly used pedestrian re-identification database;then,it summarizes the challenges of pedestrian re-identification technique faced by the institute at thisstage. Finally,the development direction of pedestrian re-identificationin the future is proposed.
出处 《信息技术》 2016年第7期195-198,共4页 Information Technology
关键词 行人再识别 特征表示 行人数据库 综述 pedestrian re-identification feature representation pedestrian re-identification database survey
  • 相关文献

参考文献27

  • 1Koestinger M , liirzer M , Wohlhart P , et al. Large scale metriclearning from equivalence constraints [C]. IEEE Computer Visionand Pattern Recognition( CVPR) , 2012: 2288 -2295.
  • 2Zheng W S, Gong S, Xiang T. Person re-identification bv probabilisticrelative distance comparison[C]. Computer Vision and PatternRecognition( CVPR) , 2011 : 649 -656.
  • 3Prosser B , Zheng W S, Gong S, et al. Person Re-Identification bySupport Vector Ranking[C]. BMVC. 2010, 2(5): 6.
  • 4Schwartz W R , Davis L S. Learning discriminative appearancebasedmodels using partial least squares [C]. Computer Graphicsand Image Processing( S1BGRAP1) , 2009: 322 -329.
  • 5Oreifej 0, Mehran R , Shah M . Human identity recognition in aerialimages[C]. Computer Vision and Pattern Recognition ( CVPR),2010: 709 -716.
  • 6Jungling K , Bodensteiner C , Arens M . Person re-identification inmulti-camera networks[C]. Computer Vision and Pattern RecognitionWorkshops(CVPRW) , 2011 : 55-61.
  • 7Zhao R , Ouvang W , W'ang X . Lnsupervised salience learning forperson re-identification[C] . Computer Vision and Pattern Recognition(CVPR) , 2013: 3586 -3593.
  • 8Gheissari N , Sebastian T B , Hartley R. Person reidentificationusing spatiotemporal appearance [C]. Computer Vision and PatternRecognition(CVPR) , 2006, 2: 1528 - 1535.
  • 9Wang X , Doretto G , Sebastian T , et al. Shape and appearance contextmodeling[C]. Computer Vision, 2007 : 1 - 8.
  • 10Farenzena M , Bazzani L , Perina A , et al. Person re-identificationby symmetry-driven accumulation of local features [C] . ComputerVision and Pattern Recognition( CVPR) , 2010: 2360 -2367.

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部