期刊文献+

Comparative Theoretical Studies on Several Energetic Substituted Dioxin-imidazole Derivatives

几种咪唑-二氧杂环的含能取代衍生物的理论研究
下载PDF
导出
摘要 The molecular structures, infrared spectra, heats of formation (HOFs), detonation proper- ties, chemical and thermal stabilities of several tetrahydro-[1,4]dioxino[2,3-d:5,6-d'] diimida- zole derivatives with different substituents were studied using DFT-B3LYP method. The properties of the compounds with different groups such as -NO2, -NH2, -N3, and -ONO2 were further compared. The -NO2 and -ONO2 groups are effective substituents for in- creasing the densities of the compounds, while the substitution of -N3 group can produce the largest HOF. The compound with -NO2 group has the same detonation properties as 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, while the compound with -ONO2 group has lower detonation properties than those of hexahydro-1,3,5-trinitro-l,3,5-triazine. The na- ture bond orbital analysis reveals that the relatively weak bonds in the molecules are the bonds between substituent groups and the molecular skeletons as well as C-O bonds in the dioxin rings. The electron withdrawing groups (-NO2, -N3, and -ONO2) have induc- rive effects on the linkages between the groups and molecular skeletons. In addition, re- searches show that the electronegativities of the groups are related with the stabilities of the compounds. Considering detonation performance and thermal stability, the 1,5-dinitro-2,6- bis(trinitromethyl)-3a,4a,7a,8a-tetrahydro-[1,4]dioxino-[2,3-d:5,6-d'] diimidazole satisfies the requirements of high energy density materials.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第3期349-357,I0002,共10页 化学物理学报(英文)
关键词 Density functional theory Condensed density Heats of formation Detonationproperty Thermal stability 密度泛函理论 凝聚相密度 生成焓 爆轰性能 热稳定性
分类号 O [理学]
  • 相关文献

参考文献52

  • 1S. Bulusu, R. Damavarapu, and J. R. Autera, J. Phys Chem. 99, 5009 (1995).
  • 2S. G. Cho, Y. G. Cheun, and B. S. Park, J. Mol. Struct 432, 41 (1998).
  • 3P. R. Singh, H. X. Gao, and D. T. Meshri, Struct. Bond 125, 35 (2007).
  • 4D. M. Badgujar, M. B. Talawar, and S. N. Asthana, J. Hazard Mater. 151,289 (2008).
  • 5A. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P. Nadler, R. A. Nissan, D. J. Vanderah, R. D. Gilardi, C. F. George, and J. L. Flippen-Anderson, Tetrahedron 54, 11793 (1998).
  • 6M. Vedachalam, V. T. Ramakrishnan, J. H. Boyer, I. J. Dagley, K. A. Nelson, H. G. Adolph, R. Gilardi, C. George, and J. L. Flippen-Anderson, J. Org. Chem. 56, 3413 (1991).
  • 7H. Rongzu, L. Xingsen, and F. Yingao, J. Energetic Mater. 11,219 (1993).
  • 8M. J. Wu, S. Chen, Q. H. Shu, L. J. Li, and S. H. Jin, Propellants Explos. Pyrotech. 38, 658 (2013).
  • 9Y. L. Sun and S. F. Li, J. Hazard. Mater. 154, 112 (2008).
  • 10S. Dharavath, D. G. Vikas, P. T. Surya, and M. Krish- namurthi, Chem. A Eur. J 47, 18 (2012).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部