期刊文献+

CRISPR/Cas9介导靶向敲除拟南芥GGB基因突变体的鉴定 被引量:13

Identification of GGB Mutant Caused by CRISPR/Cas9 in Arabidopsis
下载PDF
导出
摘要 GGB是抗旱负调控基因。为了获得拟南芥ggb突变体材料,构建了以拟南芥U6启动子驱动GGBsgRNA的CRISPR/Cas9基因组编辑载体。将构建好的编辑载体利用农杆菌介导的浸花法转化野生型拟南芥。对转基因后代GGB基因的测序结果分析发现,在靶位点处有缺失4个碱基和增加1个T碱基的2种突变体产生。分别对野生型拟南芥和上述2种ggb突变体进行半定量RT-PCR分析结果显示,突变体材料中几乎检测不到GGB基因表达,说明获得了GGB基因敲除突变体。对野生型和ggb突变体叶片失水率、耐旱表型及单株种子量的测定结果表明,与野生型相比,拟南芥GGB基因突变后,叶片失水率显著减少,抗旱性明显增强,而单株种子量却并没有改变。研究表明,GGB是一种理想的作物分子育种的候选靶基因,获得的突变体为今后从农作物中克隆的GGB同源基因进行功能互补验证提供了有用的遗传材料。 GGBis a negative regulator of drought resistance.In order to obtain the Arabidopsis ggb mutant,we used AtU6 promoter to drive the expression of AtGGBsgRNA and coresponding CRISPR/Cas9 genome edting vector was constructed and was transferred into Arabidopsis by Agrobacterium-mediated floral dip.After sequencing of GGBin T2 generation,two kinds of mutants with a deletion of 4bases and an addition of 1base(T)were found at the target site,respectively.Semi-quantitative RT-PCR analysis results showed that the expression of GGBgene was almost not detected in the ggb mutant,which indicated that the mutants were GGBknockout lines.Through measuring the water loss rate,drought resistant and seed yield per plant,ggb mutant exhibited decreased water loss rate,improved drought resistance,but unchanged seed yield per plant compared to wild-type.Taken together,the above results indicated that GGBis an ideal candidate target gene for crop molecular breeding and ggb mutant is useful for functional complemention of GGBhomologous genes cloned from crops.
出处 《西北植物学报》 CAS CSCD 北大核心 2016年第5期857-864,共8页 Acta Botanica Boreali-Occidentalia Sinica
基金 国家自然科学基金(31470289) 新疆维吾尔自治区研究生科研创新项目(XJGRI2015084)
关键词 拟南芥 CRISPR/Cas9 GGB 基因敲除 失水率 Arabidopsis CRISPR/Cas9 GGB gene knockout water loss rate
  • 相关文献

参考文献3

二级参考文献22

  • 1Christian M, Cermak T, Doyle EL, et al. Genetics 2010; 186:757-761.
  • 2Carroll D, Morton J J, Beumer KJ, et al. NatProtoc 2006; 1:1329-1341.
  • 3Mahfouz MM, Li L, Shamimuzzaman M, et al. Proc Natl Aead Sci USA 2011; 108:2623-2628.
  • 4Li T, Liu B, Spalding MH, et al. Nat Biotechno12012; 30:390-392.
  • 5Cui X, Ji D, Fisher DA, et al. Nat Biotechno12011 ; 29:64-67.
  • 6Barrangou R, Fremaux C, Deveau H, et al. Science 2007; 315:1709- 1712.
  • 7Wang H, Yang H, Shivalila C S, et aL Cell 2013; 153:910-918.
  • 8Hwang WY, Fu Y, Reyon D, et al. Nat Biotechno[ 2013; 31:227-229.
  • 9Cong L, Ran FA, Cox D, et al. Science 2013; 339:819-823.
  • 10Jinek M, Chylinski K, Fonfara I, et al. Science 2012; 337:816-821.

共引文献365

同被引文献82

引证文献13

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部