期刊文献+

基于主元分析新统计量的多元统计过程监控(英文)

Multivariate statistical process monitoring based on new statistics of principal component analysis
原文传递
导出
摘要 针对传统的主元分析(PCA)的T^2和平方预测误差(SPE)检验所提供的信息并不一致的缺陷,提出了一种改进的PCA方法。该方法采用主元相关变量残差(PVR)和一般变量残差(CVR)统计量代替SPE统计量用于过程监测。将此改进的PCA方法应用到双效蒸发过程的仿真监测,与传统的PCA方法相比,新PCA方法能够有效地识别正常工况改变与过T^2程故障引起的图变化,避免了SPE统计量的保守性,能够提供更详细的过程变化信息,提高了对过程变化的分析与诊断能力。 The information provided by T^2 and squared prediction error(SPE) test of principal component analysis(PCA) is not corresponding. An improved PCA was proposed which uses principal-component-related variable residual statistic and common variable residual statistic to replace SPE statistic. Then a simulated double-effect evaporator was monitored by using the proposed method and comparisons with the conventional PCA are made. The simulation result shows that the root cause that violates the T^2 test but still satisfies SPE test can be unambiguously identified and the improved PCA can avoid the conservation of SPE statistical test and provide more explicit information about the process conditions. So the improved PCA has an enhanced fault diagnosing performance.
出处 《计算机与应用化学》 CAS 2016年第6期655-662,共8页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(61174123)
关键词 主元分析 过程监控 主元相关变量 双效蒸发过程 principal component analysis process monitoring principal-component-related variable double-effect evaporator process
  • 相关文献

参考文献11

  • 1Wang Yajun, Jia Mingxing and Mao Zhizhong. A fast monitoring method for multiple operating batch processes with incomplete modeling data types[J]. Journal of Industrial and Engineering Chemistry, 2015, 21(1):328-337.
  • 2Junichi Mori, Yu Jie. Quality relevant nonlinear bah process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach[J]. Journal of Process Control, 2014, 240):57-71.
  • 3Bin Shams M A, Budman H M and Duever T A. Fault detection, identification and diagnosis using CUSUM based PCA[J]. Chemical Engineering Science, 2011, 66(20):4488-4498.
  • 4Camacho J, Pic6 J, Ferrer A. The best approaches in the on-line monitoring of batch processes based on PCA: Dose the modeling structure matter[J] ? Analytica Chimica Acta, 2010, 642(1-2):59-68.
  • 5Zhao Chunhui, Sun Youxian. Subspace decomposition approach of fault deviations and its application to fault reconstruction[J]. ControlEngineering Practice, 2013, 21 ( 10): 1396-1409.
  • 6ChangKyu Lee, Sang Wook Choi and In-Beum Lee. Sensor fault identification based on time-lagged PCA in dynamic processes[J]. Chemometrics and Intelligent Laboratory Systems, 2004, 70:165-178.
  • 7Liu Jialin, Chen Dingsou. Fault isolation using modified contribution plots[J]. Computers & Chemical Engineering, 2014, 61 ( 11 ):9-19.
  • 8叶鲁彬,石向荣,梁军.A Multi-level Approach for Complex Fault Isolation Based on Structured Residuals[J].Chinese Journal of Chemical Engineering,2011,19(3):462-472. 被引量:4
  • 9Gertler J, Li W, Huang Y and McAvoy T. Islation enhanced principal component analysis[J]. AIChE Journal, 1999, 45:323-334.
  • 10Yves Roggo, Pascal Chalus, Lene Maurer, Carmen Lema-Martinez, Aurlie Edmond and Nadine Jent. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44(3):683- 700.

二级参考文献3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部