期刊文献+

基于能量分选的正则化匹配追踪改进算法 被引量:3

Improved algorithm of the regularized OMP algorithm based on energy sorting
下载PDF
导出
摘要 重构算法是压缩感知理论中重要的内容之一,而正则化匹配追踪算法因其优异的重构性能获得了广泛的应用。从正则化匹配追踪算法原子筛选原则出发,在相关性准则和正则化准则的基础上,提出了以能量分选为选择标准的ROMP改进算法。仿真实验证明,提出的ROMP改进算法在各个性能指标上均优于ROMP算法,验证了本改进算法的有效性和可靠性。在此基础上将其应用到雷达距离维成像中,取得了很好的成像效果。 Reconstruction algorithm is one of the most important contents of the compressive sensing theory,and as one of the reconstruction algorithms with it's excellent reconstruction performance,the regularized OMP algorithm is widely used.Based on the analysis of the atom screening principle of the ROMP algorithm,an improved algorithm is proposed.It follows the coherence principle and regularization guidelines,and an energy sorting principle is applied to the improved algorithm.Simulation results show that the improved algorithm has better performance than the ROMP algorithm in each index,and the validity and reliability is proved.At last,the proposed algorithm is applied to range dimension in radar signal processing.
作者 孙斌 赵凯恒
出处 《电子测量技术》 2016年第5期154-158,共5页 Electronic Measurement Technology
关键词 压缩感知 正则化匹配追踪算法 相关性准则 能量分选 compressive sensing regularized OMP algorithm coherence principle energy sorting
  • 相关文献

参考文献11

  • 1刘记红,徐少坤,高勋章,黎湘,庄钊文.压缩感知雷达成像技术综述[J].信号处理,2011,27(2):251-260. 被引量:40
  • 2尹宏鹏,刘兆栋,柴毅,焦绪国.压缩感知综述[J].控制与决策,2013,28(10):1441-1445. 被引量:48
  • 3徐志强.压缩感知[R].中国科学院数学与系统科学研究院计算数学与科学工程计算研究所科学与工程计算郭嘉重点实验室.2012.1.12.
  • 4CANDES E J, EI.DAR Y C, NEEDELL D. Compressed sensing with coherent and redundant dictionaries[J~. Applied and Computational Harmonic Analysis, 2011(31) :59-73.
  • 5张玉玺,孙进平,张冰尘,洪文.基于压缩感知理论的多普勒解模糊处理[J].电子与信息学报,2011,33(9):2103-2107. 被引量:16
  • 6NEEDELL D, VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J ]. Foundations of Computeational Mathematics, 2009,9 (3) : 317-334.
  • 7NEEDEI.L D,TR()PP J A. CoSaMP: Iterative signalrecovery from incomplete and inaccurate samples[J~. Applied and Computation Harmonic Analysis, 2009 (26) : 301-321.
  • 8PATEL V M, MALEH R, GILBERT A C, et al. Gradient-based image recovery methods {rom incomplete Fourier measurements [ J 1. IEEE Transactions on Image Processing, 2012, 21 (1): 94-105.
  • 9李忠伟,王鹏,崔学荣,吴春雷.基于DPCM算法的随钻测量数据压缩方法的研究[J].电子测量技术,2015,38(5):111-113. 被引量:7
  • 10许会,任建,李邦宇,周春源,郭莹.应用于超宽带呼吸检测的压缩感知算法研究[J].仪器仪表学报,2015,36(1):56-62. 被引量:18

二级参考文献165

  • 1杨锦舟.基于随钻自然伽马、电阻率的地质导向系统及应用[J].测井技术,2005,29(4):285-288. 被引量:31
  • 2Jeff Alford,Roger B.Goobie,Colin M.Sayers,Ed Tollefsen,Jay Cooke,Andy Hawthorn,John C.Rasmus,Ron Thomas.随钻声波测井新技术[J].国外测井技术,2007,22(1):53-60. 被引量:8
  • 3方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 4毛士艺,张瑞生,许伟武,等.脉冲多普勒雷达[M].北京:国防工业出版社,1992.
  • 5Donoho D L.Compressed sensing[J].IEEE Trans.Inform.Theory,2006,52(4):1289-1306.
  • 6Candes E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequeney information[J].IEEE Trans.Inform.Theory,2006,52(2):489-509.
  • 7Candès E J,Tao T.Near-optimal signal recovery from ran-dom projections:Universal encoding strategies?[J].IEEE Trans.Inform.Theory,2006,52(12):5406-5425.
  • 8Candès E J,Wakin M B.People hearing without listen-ing:an introduction to compressive sampling[J].IEEESignal Process.Mag.,2008,25(2):21-30.
  • 9Valiollahzadeh S,Firouzi H,Babaie.Zadeh M,et al.Image Denoising Using Sparse Representations.Author manuscript,published in ICA 2009,LNCS 5441,2009.557-564.
  • 10Rauhut H,Schass K,Vandergheynst P.Compressed sens-ing and redundant dictionaries[J].IEEE Trans.on Inform.Theory,2008,54(5):2210-2219.

共引文献122

同被引文献21

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部