期刊文献+

氧化石墨烯负载零价纳米铁吸附水中环丙沙星的研究 被引量:13

Adsorption of ciprofloxacin from water using graphene oxide supported nanoscale zero valent iron
原文传递
导出
摘要 通过溶液还原法制备了氧化石墨烯负载零价纳米铁NZVI16-GO1(F16G1),并将其用于水中环丙沙星的去除.同时,采用X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)、能谱仪(EDS)和热重分析仪(TG)等手段表征了F16G1的结构、化学组成和微观形貌.结果发现,F16G1对水中环丙沙星具有良好的吸附性能;氧化石墨烯的引入可以有效降低零价纳米铁的自身团聚;F16G1与环丙沙星的吸附作用很大程度上受静电引力的影响.实验同时考察了p H值、反应时间、初始浓度、投加量等因素对F16G1吸附环丙沙星的影响.结果表明,在p H=4~5之间,溶液的p H值对吸附量没有明显影响;F16G1对环丙沙星的最大吸附量是656.66 mg·g-1;Langmuir等温吸附模型可以用来描述吸附平衡过程.零价纳米铁的磁性使复合材料便于回收. Graphene oxide( GO) supported zero valent iron nanoparticles( NZVI),NZVI16-GO1( F16G1),were successfully synthesized by using liquid phase reduction method,and exhibited excellent adsorption of ciprofloxacin( CIP) in water. The structure,chemical composition and micro-morphology of F16G1 were characterized by using X-ray diffraction( XRD),field emission scanning electron microscopy( FE-SEM),energy dispersive spectrometer( EDS) and thermogravimetric analysis( TG). It was found that the agglomeration of NZVI was remarkably inhibited by the introduction of GO. The electrostatic attraction showed significant influence on the adsorption of CIP onto F16G1. The effects of p H,reaction time,initial concentration and dosage on the removal efficiency of NZVI were investigated. No obvious change of adsorption capacity was detected with the p H ranging from 4 to 5.The maximum adsorption capacity of F16G1 was determined to be 656.66 mg·g^(-1),which could be fitted to the Langmuir adsorption isotherm. Furthermore,the inherent magnetic property of NZVI contributed to the easy recovery of composite adsorbents.
出处 《环境科学学报》 CAS CSCD 北大核心 2016年第7期2443-2450,共8页 Acta Scientiae Circumstantiae
基金 国家自然科学基金(No.51478455 51221892) 国家高技术研究发展计划(863)项目(No.2012AA062606)~~
关键词 氧化石墨烯 零价纳米铁 吸附 环丙沙星 等温模型 graphite oxide nanoscale zero valent iron adsorption ciprofloxacin isothermal
  • 相关文献

参考文献39

  • 1Avella A C, Delgado L F, Albasi C, et al. 2010.Effect of cytostatic drug presence on extracellular polymeric substances formation in municipal wastewater treated by membrane bioreactor[J]. Bioresource Technology, 101 (2):.
  • 2Bang S, Johnson M D, Korfiatis G P, et al. 2005.Chemical reactions between arsenic and zero-walent iron in water[J]. Water Research, 39 (5): 763–770.
  • 3Carabineiro S A C, Thavorn-amornsri T, Pereira M F R, et al. 2012.Comparison between activated carbon,carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin[J]. Catalysis Today, 186 (1): 29.
  • 4Carmosini N, Lee L S. 2009.Ciprofloxacin sorption by dissolved orgnic carbon from reference and bio-waste materials[J]. Chemosphere, 77 (6): 813–820.
  • 5Carrasquillo A J, Bruland G L, Mackay A A, et al. 2008.Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals:influence of compound structure[J]. Environmental Science & Technology, 42 (20):.
  • 6Chang X, Meyer M T, Liu X, et al. 2010.Determination of antibiotics in sewage from hospitals,nursery and slaughter house,wastewater treatment plant and source water in Chongqing region of three Gorge Reservoir in China[J].
  • 7Chen J Y, Chen W, Zhu D. 2008.Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes:effects of aqueous solution chemistry[J]. Environmental Science & Technology, 42 (19): 7225–7230.
  • 8Cox C E, Marbury T C, Pittman W G, et al. 2002.A randomized,Double-blind,multicenter comparison of gatifloxacin versus ciprofloxacin in the treatment of complicated urinary tract infection and pyelonephritis[J]. Clinical.
  • 9Deng X, Li H, Luo F, et al. 2010.The adsorption properties of Pb(Ⅱ) and Cd(Ⅱ) on functionalized graphene prepared by electrolysis method[J]. Journal of Hazardous Materials, 183 (1/3): 923–930.
  • 10Diwan V, Tamhankar A J, Khandal R K, et al. 2010.Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain[J]. India BMC Public Health, 10 : 414–422.

二级参考文献74

  • 1展漫军,杨曦,杨洪生,孔令仁.天然水体腐殖质对双酚A光降解影响的研究[J].环境科学学报,2005,25(6):816-820. 被引量:21
  • 2李海莹,王薇,金朝晖,张环,宣晓梅,李铁龙.纳米铁的制备及其对污染地下水的脱硝研究[J].南开大学学报(自然科学版),2006,39(1):8-13. 被引量:31
  • 3Agrawal N, Ray R S, Farooq M, et al. 2007. Photosensitizing potential of ciprofloxacin at ambient level of UV radiation [ J]. Photochemistry and Photobiology, 83(5) : 1226-1236.
  • 4Al-Ahmad A, Daschner F D, Kummerer K. 1999. Biodegradability of eefotiam, ciprofloxaein, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria [ J ]. Arch Environ Contam Toxicol, 37 (2) : 158-163.
  • 5Alonso A, Sanchez P, Martinez J L. 2001. Environmental selection of antibiotic resistance genes [J]. Environmental Microbiology, 3 (1): 1-9.
  • 6Araki T H, Kitaoka H. 1998. ESR detection of free radical and active oxygen species generated during photolysis of fluoroquinolones [J]. Chem Pharm Bull, 46(6) : 1021-1026.
  • 7Bongaerts G P, Hoogkamp-Korstanje J A. 1993. In Vitro activities of BAY Y3118, ciprofloxacin, ofioxacin, fleroxacin against gram- positive and gram-negative pathogens from respiratory tract and soft tissue infections [J]. Antimicrob Agents Chemother, 37 ( 9 ) : 2017- 2019.
  • 8Cardoza L A, Almeida V K, Carr A, et al. 2003. Separations coupled with NMR detection [J]. TrAC Trends in Analytical Chemistry, 22 (10) : 766-775.
  • 9Dodd M C, Shah A D, Von Gunten U, et al. 2005. Interactions of fluoroquinolone antibacterial agents with aqueous chlorine: Reaction kinetics, mechanisms, and transformation pathways [J]. Environ Sci Technol, 39 (18) :7065-7076.
  • 10Ge L K, Chen J W, Wei X X, et al. 2010. Aquatic photochemistry of fluoroquinolonc antibiotics: kinetics, pathways, and multivariate effects of main water constituents [J]. Environ Sei Techol, 44 (7) : 2400-2405.

共引文献40

同被引文献78

引证文献13

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部