摘要
针对矿井突水水源的水化学特征,采用Na^++K^+、Ca^(2+)、Mg^(2+)、Cl^-、SO_4^(2-)、HCO_3^-6种水化离子的浓度作为识别矿井水源依据;以35组水源样品作为训练样本,运用Matlab软件对网络进行训练,建立6×6×4的网络优化模型;使用构建的BP神经网络对4组待测样本进行识别,并与实际突水水源类别进行比对。应用结果表明:BP神经网络能够准确地识别矿井突水水源,可为防治矿井水害提供有力的保障。
For water chemical characteristics of mine water-bursting source, using Na^++K^,Ca^2+,Mg^2+,Cl^-,SO4^2-,HCO3^- six hydrated ion concentration as the basis of mine water recognition; 35 groups of water samples were selected as the training sample, and used Matlab software to train the network, established a 6×6×4 network optimization model, used BP neural network to identify four groups of the sample to be tested, and compared with the actual water inrush source category. Application results show: BP neural network can accurately identify the mine water-bursting source and give full play to its advantages can provide a powerful guarantee for the prevention and control of mine water disaster.
出处
《煤炭技术》
CAS
北大核心
2016年第7期144-146,共3页
Coal Technology
基金
国家"十二五"科技支撑计划重点项目(2011BAB05B03)
"煤矿灾害预防与控制河南省高校重点实验室培育基地"建设经费资助(200925)