摘要
本文主要研究了H∈(0,1)时次分数布朗运动的q次赋权Hermite变差的一些中心极限定理,其中q为整数且q≥2.当1/(2_q)<H≤1-1/(2_q)时,中心极限定理成立,且其极限为一个条件高斯分布.当H<1/(2_q)时,赋权Hermit.e变差L^2收敛,且其极限仅依赖于次分数布朗运动.
The aim of this paper is to derive some central limit theorems for the weighted Hermite variations of order q 〉 2 of the subfractional Brownian motion with H E (0, 1), where q is an integer. The central limit theorem holds for 1/2q〈H≤1-1/2q the limit being a conditionally Gaussian distribution. If H 〈 1/qq,we show the convergence in L^2 to a limit which only depends on the subfractional Brownian motion.
出处
《数学进展》
CSCD
北大核心
2016年第4期625-640,共16页
Advances in Mathematics(China)
基金
partially supported by NSFC(No.11401313)
China Postdoctoral Science Foundation(No.2014M560368,No.2015T80475)
NSF of Jiangsu Educational Committee(No.14KJB110013)
2014 Qing Lan Project
Jiangsu Planned Projects for Postdoctoral Research Funds(No.1401011C)
2013 Jiangsu Government Scholarship for Overseas Studies