期刊文献+

次分数布朗运动的Hermite变差(英文)

Hermite Variation of Subfractional Brownian Motion
原文传递
导出
摘要 本文主要研究了H∈(0,1)时次分数布朗运动的q次赋权Hermite变差的一些中心极限定理,其中q为整数且q≥2.当1/(2_q)<H≤1-1/(2_q)时,中心极限定理成立,且其极限为一个条件高斯分布.当H<1/(2_q)时,赋权Hermit.e变差L^2收敛,且其极限仅依赖于次分数布朗运动. The aim of this paper is to derive some central limit theorems for the weighted Hermite variations of order q 〉 2 of the subfractional Brownian motion with H E (0, 1), where q is an integer. The central limit theorem holds for 1/2q〈H≤1-1/2q the limit being a conditionally Gaussian distribution. If H 〈 1/qq,we show the convergence in L^2 to a limit which only depends on the subfractional Brownian motion.
作者 刘俊峰
出处 《数学进展》 CSCD 北大核心 2016年第4期625-640,共16页 Advances in Mathematics(China)
基金 partially supported by NSFC(No.11401313) China Postdoctoral Science Foundation(No.2014M560368,No.2015T80475) NSF of Jiangsu Educational Committee(No.14KJB110013) 2014 Qing Lan Project Jiangsu Planned Projects for Postdoctoral Research Funds(No.1401011C) 2013 Jiangsu Government Scholarship for Overseas Studies
关键词 次分数布朗运动 Malliavin计算 赋权Hermite变差 中心极限定理 subfractional Brownian motion Malliavin calculus weighted Hermite variation central limit theorem
  • 相关文献

参考文献25

  • 1Bojdecki, T., Gorostiza, L.G. and Talarczyk, A., Sub-fractional Brownian motion and its relation to occupa- tion times, Statist. Probab. Lett., 2004, 69(4): 405-419.
  • 2Bojdecki, T., Gorostiza, L.G. and Talarczyk A., Some extensions of fractional Brownian motion and sub- fractional Brownian motion related to particle systems, Electron. Commun. Probab., 2007, 12: 161-172.
  • 3Breuer, P. and Major, P., Central limit theorems for non-linear functionals of Gaussian fields, J. Multivariate Anal., 1983, 13(3): 425-441.
  • 4Corcuera, J.M., Nualart, D. and Woerner, J.H.C., Power variation of some integral fractional processes, Bernoulli, 2006, 12(4): 713-735.
  • 5Dobrushin, R.L. and Major, P., Non-central limit theorems for non-linear funetionals of Gaussian fields, Z. Wahrseh. Verw. Gebiete, 1979, 50(1): 27-52.
  • 6Dzhaparidze, K. and van Zanten, H., A series expansion of fractional Brownian motion, Probab. Theory Related Fields, 2004, 130(1): 39-55.
  • 7Giraitis, L. and Surgailis, D., CLT and other limit theorems for functionals of Gaussian processes, Z. Wahrseh. Verw. Gebiete, 1985, 70(2): 191-212.
  • 8Gradinaru, M. and Nourdin, I., Milstein's type schemes for fractional SDEs, Ann. Inst. Henri PoineaTd Probab. Stat., 2009, 45(4): 1085-1098.
  • 9Liu, J.F. and Yan, L.T., Remarks on asymptotic behavior of weighted quadratic variation of subfractional Brownian motion, J. Korean Statist. Soe., 2012, 41(2): 177-187.
  • 10Neuenkirch, A. and Nourdin, I., Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion, J. Theoret. Probab., 2007, 20(4): 871-899.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部