期刊文献+

高光谱遥感图像空谱联合分类方法研究 被引量:18

Spectral-spatial joint classification method of hyperspectral remote sensing image
下载PDF
导出
摘要 在遥感影像研究领域里,高光谱数据分类是一个热点问题。近年来,在这个问题上涌现出很多研究方法,然而,大多数方法都是用浅层的方法提取原始数据的特征。将深度学习的方法引入高光谱图像分类中,提出一种新的基于深信度网络(DBN)的特征提取方法和图像分类架构用于高光谱数据分析。将谱域-空域特征提取和分类器相结合提高分类精度。使用高光谱数据进行实验,结果表明该分类器优于当前的一些先进的分类方法。此外,本文还揭示了深度学习系统在高光谱图像分类研究中具有的巨大潜力。 In remote sensing image research area, hyperspectral data classification is a hot topic. In recent years, many study methods for this issue emerge; however, the majority of the methods adopt the shallow layer method to extract the characteristics of original data. In this paper, the deep study method is introduced in the hyperspectral image classification; a new characteristic extraction method and image classification construction based on deep belief network (DBN) is proposed, and used in hyperspectral data analysis. The spectral-spatial feature extraction and classifier are combined together to achieve high classification accuracy. Experiment was carried out using the hyperspectral data; experiment results indicate that the proposed classifier is superior to some current advanced classification methods. In addition, this paper also reveals that the deep learning system has great potential in the study of hyperspectral image classification.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第6期1379-1389,共11页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61402212) 国家科技支撑计划(2013BAH12F00)项目资助
关键词 深信度网络 深度学习 特征提取 高光谱图像分类 deep belief network(DBN) deep learning feature extraction(FE) hyperspectral image classification
  • 相关文献

参考文献3

二级参考文献78

  • 1杨国鹏,余旭初,陈伟,刘伟.基于核Fisher判别分析的高光谱遥感影像分类[J].遥感学报,2008,12(4):579-585. 被引量:24
  • 2王玉磊,赵春晖,齐滨.基于光谱相似度量的高光谱图像异常检测算法[J].吉林大学学报(工学版),2013,43(S1):148-153. 被引量:4
  • 3余旭初,冯伍法,林丽霞.高光谱──遥感测绘的新机遇[J].测绘科学技术学报,2006,23(2):101-105. 被引量:24
  • 4LANCKRIET G,CRISTIAN/NI N,ELGHAOUI L,et al. Ieam- ing the kernel matrix with semi-definite programming[ J ]. Jour- nal of Machine ~aming Research,2ff)4(5) :27-72.
  • 5BACH F. Consistency of the group Lasso and multiple kernel learning [ J ]. Journal of Machine Learning Re- searc h, 2008 ( 9 ) : 1179-1225.
  • 6BACH F, LANCKRIET G, JORDAN M. Multiple kernel learning,conic duality, and the SMO algorithm [ J ]. Pro- ceedings of the 21st International Conference on Machine Learning, 2004 : 41-48.
  • 7SONNENBURG S, R.~TSCH G, SCHAFER C, et al. Large scale multiple kernel learning [ J ]. Journal of Machine Learning Research, 2006,7 ( 1 ) : 1531 - 1565.
  • 8ZIEN, ONG C S. Multiclass multiple kernel learning[ J ]. In Proceedings of the 24th International Conference on Machine Learning ( ICML 2007 ) ,2007 : 1191-1198.
  • 9RAKOTOMAMONJY A, BACH F, CANU S, et al. More efficiency in multiple kernel learning [ J ]. Proceedings of the 24th Annual International Conference on Machine Learning ( ICML 2007 ) ,2007:775-782.
  • 10RAKOTOMAMONJY A, BACH F, CANU S, et al. Simple MKL[ J ]. Journal of Machine Learning Research, 2008 : 1-34.

共引文献62

同被引文献143

引证文献18

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部