期刊文献+

高超声速激波/边界层干扰及MVG阵列流动控制研究 被引量:5

STUDIES ON HYPERSONIC SHOCK WAVE/BOUNDARY LAYER INTERACTIONS AND FLOW CONTROL BASED ON MVG ARRAY
原文传递
导出
摘要 高超声速飞行器流场中通常会伴随激波/边界层干扰(SWBLI),其引发的流动分离将导致进气道性能下降。该文采用湍流分离涡(DES)方法、结合有限体积离散方法对来流马赫数为7流场中SWBLI诱导的分离气泡进行数值研究,模拟结果清晰地显示了分离气泡从产生到充分发展的具体过程,揭示了分离气泡的产生机理。利用微型涡流发生器(MVG)阵列对其进行控制,讨论了流场结构、壁面静压力、壁面剪切力及总压损失等参数变化对SWBLI控制效果的影响。结果表明:MVG阵列可显著改变高超声速流体边界层,使得分离气泡尺寸减小,分离激波强度减弱,分离气泡内及其下游流体的流向速度梯度增加,总压损失降低可达1.9%。 Shock wave/boundary layer interaction (SWBLI) is a ubiquitous phenomenon encountered in hypersonic flow fields, and the flow separation it induces leads to performance degradation of hypersonic inlets. In this paper, the separation bubble which is induced by SWBLI in hypersonic flow (Ma=7) is simulated using DES (detached eddy simulation) and the finite volume method. The generation mechanism and development process of separation bubbles are revealed. The separation bubble was also controlled by an MVG array, and the flow field structures, wall pressure, wall shear stress, and the loss of total pressure when one is used are all discussed. The results indicate that an MVG array can suppress the separation bubble which is induced by hypersonic SWBLI; the strength of separation shock is weakened as the size of the separation bubble decreases; the streamwise velocity gradients of the separation bubble and its downstream are increased; the reduction of the loss of total pressure can reach 1.9%.
出处 《工程力学》 EI CSCD 北大核心 2016年第7期23-30,共8页 Engineering Mechanics
基金 总装预研基金项目(9140C300502130C30105) 江苏省普通高校研究生创新计划项目(KYZZ15_0134)
关键词 激波/边界层干扰 微型涡流发生器阵列 流动分离 边界层控制 流向涡 高超声速 shock wave/boundary layer interaction micro-vortex generator array flow separation boundarylayer control streamwise vortiee hypersonic flow
  • 相关文献

参考文献25

  • 1Delery J M.Shock wave/turbulent boundary layer interaction and its control[J].Progress in Aerospace Sciences,1985,22(4):209―280.
  • 2Ferri A,Atti di Guidonia.Experimental results with airfoils tested in the high speed tunnel at Guidonia[R].Washington DC:NACA TM 946,1939.
  • 3Knight D,Yan H,Panaras A G,et al.Advances in CFD prediction of shock wave turbulent boundary layer interactions[J].Progress in Aerospace Sciences,2003,39(2):121―184.
  • 4Donovan J F.Control of shock wave/turbulent boundary layer interactions using tangential injection[C]//34th Aerospace Sciences Meeting kkk Exhibit,AIAA Paper,Reno,1996:96―0443.
  • 5Gefroh D,Loth E,Dutton C,et al.Aeroelastically deflecting flaps for shock/boundary-layer interaction control[J].Journal of Fluids and Structures,2003,17(7):1001―1016.
  • 6Caraballo E,Webb N,Little J,et al.Supersonic inlet flow control using plasma actuators[R].Orlando,Florida,AIAA 2009-924,2009.
  • 7何伟,牛中国,潘波,林麒.等离子抑制翼尖涡实验研究[J].工程力学,2013,30(5):277-281. 被引量:13
  • 8Ford C W P,Babinsky H.Micro-ramp control for oblique shock wave/boundary layer interactions[C]//Collection of Technical Papers-37th AIAA Fluid Dynamics Conference,2007,2:972―985.
  • 9Babinsky H,Ogawa H.SBLI control for wings and inlets[J].Shock Waves,2008,18(2):89―96.
  • 10Mounts J S,Barber T J.Numerical analysis of shock-induced separation alleviation using vortex generators[R].AIAA 92-0751,1992.

二级参考文献52

共引文献51

同被引文献39

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部