期刊文献+

港湾振荡下港内低频波浪的数值研究 被引量:2

NUMERICAL STUDY ON LOW-FREQUENCY WAVES INSIDE THE HARBOR DURING HARBOR OSCILLATIONS
原文传递
导出
摘要 该文采用完全非线性Boussinesq模型模拟了由双色波群诱发的狭长型矩形港内的二阶长波共振现象。基于一个港内低频波浪的分离方法,系统研究了港湾处于最低的四个共振模态下入射短波的波长和波幅对港内锁相长波和自由长波的波幅以及它们的相对成分的影响。研究表明:在该文所研究的特定港口和短波频率、波幅范围内,锁相长波和自由长波波幅均随着短波波长的增大而增大,并且第一共振模态下的锁相长波与自由长波的振幅比往往要大于其他三个模态下的值。在各共振模态下,锁相长波与自由长波的波幅均随入射短波波幅成平方关系变化,但它们的振幅比却几乎不受入射短波波幅的影响。 The second-order long wave oscillation phenomena inside an elongated rectangular harbor induced by bichromatic wave groups are simulated with a fully nonlinear Boussinesq model. Based on a low-frequency wave separation procedure, this paper investigates how the amplitudes of bound and free long waves and their relative components change with respect to the wavelengths and amplitudes of the incident short waves under the condition of the lowest four resonant modes systematically. It shows that for the given harbor and the given ranges of the short wave frequency and amplitude, the amplitudes of bound and free long waves increase with the short wavelength; and the ratios of them in the first mode are inclined to be larger than those in the next three modes. For all the four resonant modes, both of the amplitudes of bound and free long waves change quadratically with the amplitudes of the incident short waves. However, the ratios of them are almost not affected by the short wave amplitudes.
出处 《工程力学》 EI CSCD 北大核心 2016年第7期159-166,共8页 Engineering Mechanics
基金 国家自然科学基金项目(11172058 51221961 51422901)
关键词 港湾振荡 低频波浪 锁相长波 自由长波 Boussinesq模型 harbor oscillations low-frequency waves bound long waves free long waves Boussinesq models
  • 相关文献

参考文献16

  • 1Rabinovich A B.Seiches and harbor oscillations.In:Kim Y,editor.Handbook of coastal and ocean engineering[M].Singapoure:World Scientific Publishing,2009:193―236.
  • 2López M,Iglesias G.Long wave effects on a vessel at berth[J].Applied Ocean Research,2014,47:63―72.
  • 3Bowers E C.Harbour resonance due to set-down beneath wave groups[J].Journal of Fluid Mechanics,1977,79(1):71―92.
  • 4Mei C C,Agnon Y.Long-period oscillations in a harbour induced by incident short waves[J].Journal of Fluid Mechanics,1989,208:595―608.
  • 5Wu J K,Liu P L-F.Harbour excitations by incident wave groups[J].Journal of Fluid Mechanics,1990,217:595―613.
  • 6Thotagamuwage D T,Pattiaratchi C B.Observations of infragravity period oscillations in a small marina[J].Ocean Engineering,2014,88:435―445.
  • 7Guerrini M,Bellotti G,Fan Y,et al.Numerical modelling of long waves amplification at Marina di Carrara Harbour[J].Applied Ocean Research,2014,48:322―330.
  • 8高俊亮,马小舟,王岗,董国海.波群诱发的非线性港湾振荡中低频波浪的数值研究[J].工程力学,2013,30(2):50-57. 被引量:4
  • 9Kirby J T.Boussinesq models and applications to nearshore wave propagation,surfzone processes and wave-induced currents[J].Elsevier Oceanography Series,2003,67:1―41.
  • 10Kirby J T,Long W,Shi F.Funwave 2.0 Fully nonlinear boussinesq wave model on curvilinear coordinates[R].Newark:Center for Applied Coastal Research Dept.of Civil&Environmental Engineering,University of Delaware,2003.

二级参考文献23

  • 1DONG GuoHai, WANG Gang, MA XiaoZhou & MA YuXiang State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China.Numerical study of transient nonlinear harbor resonance[J].Science China(Technological Sciences),2010,53(2):558-565. 被引量:6
  • 2马小舟.近岸低频波浪的Boussinesq模拟[C].大连:大连理工大学,2006.
  • 3Bowers E C. Harbour resonance due to set-down beneath wave groups [J]. Journal of Fluid Mechanical, 1976, 79(1): 71 -92.
  • 4Mei C C, Agnon Y. Long-period oscillations in a harbour induced by incident short waves [J]. Journal of Fluid Mechanical, 1989, 208: 595-608.
  • 5De Girolamo P. An experimental on harbour resonance induced by incident regular waves and irregular short waves [J]. Coastal Engineering, 1996, 27(1-2): 47-66.
  • 6Wei G, Kirby J T. Time-dependent numerical code for extended Boussinesq equations [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1995, 121(5): 251- 261.
  • 7Wei G. Fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves [J]. Journal of Fluid Mechanical, 1995, 294:71 - 92.
  • 8Schaffer H A, Sorensen O R. On the internal wave generation in Boussinesq and mild-slope equations [J]. Coastal Engineering, 2006, 53(4): 319-323.
  • 9Losada I J. Numerical modeling of nonlinear resonance of semi-enclosed water bodies: Description and experimental validation [J]. Coastal Engineering, 2008, 55(1): 21 -34.
  • 10Massell S R. Wavelet analysis for processing of ocean surface wave records [J]. Ocean Engineering, 2001, 28(8): 957-987.

共引文献12

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部