期刊文献+

全动垂直尾翼的抖振主动控制方法研究 被引量:2

STUDY OF ACTIVE BUFFETING CONTROL METHODS OF FULLY-MOVABLE VERTICAL TAILS
原文传递
导出
摘要 全动垂尾结构不同于铰接方向舵的垂直安定面结构。该文深入研究了全动垂尾抖振响应的压电驱动控制、垂尾旋转控制以及混合压电控制和垂尾旋转控制的三种主动控制方法。使用压电驱动的载荷比拟方法对压电纤维复合材料(MFC)驱动器进行建模,利用偶极子格网法计算随体空气动力。采用线性二次型高斯最优控制(LQG)方法分别设计三种模型的控制律。分析三种控制模型的抖振响应,研究其控制效果的差异,并进行比较。结果表明:压电控制因受控制电压和压电功放所限,控制效果有限;垂尾旋转控制由于受限于控制频率,对高频激励控制效果不明显;混合控制方法兼具垂尾旋转控制和压电控制两种方法的优点,能同时降低低阶模态和高阶模态上的能量,从而扩大了控制频率的范围,因此其控制效果最好;最后,通过具有不同结构参数的全动垂尾模型的算例,验证了混合抖振控制方法的可行性和有效性。 Fully-movable vertical tail structures are different from vertical stabilizer structures with rudders. Three active control methods including piezoelectric control, vertical tail rotation control, and hybrid piezoelectric control and vertical tail rotation control of fully-movable vertical tails are studied. The electrodynamics of macro fiber composite (MFC) actuators are modeled by the load simulation method of using a piezoelectric actuator and the motion-induced aerodynamic forces are calculated by the doublet-lattice method. The control laws of the three models are designed using the linear quadratic Gaussian (LQG) method. The buffeting responses of the three control models are analyzed, and afterwards the differences and comparisons of the control effect of those models are investigated. The results show that the control effect of the piezoelectric control is limited due to the limitation of the control voltage and the piezoelectric power amplifier. Because the vertical tail's rotation control is subject to its own control frequency, its control effect is not obvious for high-frequency excitation. The hybrid control method combines the advantages of the vertical tail rotation control and the piezoelectric control, by which the energy in low-order and high-order modes are all reduced, thus the scope of control frequency is markedly expanded. Therefore, the control effect of the hybrid control is the best. Finally, numerical examples with different structural parameters for the fully-movable vertical tails verify the feasibility and effectiveness of the hybrid buffeting control method.
作者 孙杰 李敏
出处 《工程力学》 EI CSCD 北大核心 2016年第7期234-243,共10页 Engineering Mechanics
基金 国家自然科学基金重点项目(11232012) 国家自然科学基金面上项目(11372320)
关键词 全动垂尾 抖振 LQG MFC 垂尾旋转控制 混合控制 fully-movable vertical tail buffeting LQG MFC vertical tail rotation control hybrid control
  • 相关文献

参考文献22

  • 1Anderson W D,Patel S R,Black C L.Low-speed wind tunnel buffet testing on the F-22[J].Journal of Aircraft,2006,43(4):879―885.
  • 2李劲杰,杨青,杨永年.边条翼布局双垂尾抖振的数值模拟[J].空气动力学学报,2007,25(2):205-210. 被引量:11
  • 3韩冰,徐敏,蔡天星,姚伟刚.涡破裂诱导的垂尾抖振数值模拟[J].航空学报,2012,33(5):788-795. 被引量:7
  • 4高杰,张明禄,吕志咏.双立尾和三角翼之间的气动干扰实验研究[J].实验流体力学,2005,19(3):51-57. 被引量:6
  • 5Sheta E F.Buffet alleviation of F/A-18 aircraft using LEX fences[C].44th AIAA/ASME/ASCE/AHS Structures,Structural Dynamics,and Materials Conference,Norfolk Virginia America:AIAA Paper,2003:1―11.
  • 6Bean D E,Wood N J.Experimental investigation of twin-fin buffeting and suppression[J].Journal of Aircraft,1996,33(4):761―767.
  • 7Rock S M,Ashley H,Digumarthi R,et al.Active control for fin buffet alleviation[C].US Air Force Wright Laboratory,Wright Patterson AFB,Ohio America:AIAA Paper,1993:1051―1056.
  • 8Breitsamter C.Aerodynamic active control for fin-buffet load alleviation[J].Journal of Aircraft,2005,42(5):1252―1263.
  • 9Nitzsche F,Zimcik D G,Ryall T G,et al.Closed-loop control tests for vertical fin buffeting alleviation using strain actuation[J].Journal of Guidance,Control,and Dynamics,2001,24(4):855―857.
  • 10Sheta E F,Moses R W,Huttsell L J.Active smart material control system for buffet alleviation[J].Journal of Sound and Vibration,2006,292(3/4/5):854―868.

二级参考文献50

  • 1李劲杰,杨青,李建英,杨永年,牟让科,张积亭,齐丕骞.双垂尾抖振实验研究[J].西北工业大学学报,2005,23(4):444-447. 被引量:4
  • 2高杰,张明禄,吕志咏.双立尾和三角翼之间的气动干扰实验研究[J].实验流体力学,2005,19(3):51-57. 被引量:6
  • 3吕志咏,张明禄,高杰.双立尾/三角翼布局的立尾抖振研究[J].实验流体力学,2006,20(1):13-16. 被引量:10
  • 4李劲杰,杨青,杨永年.边条翼布局双垂尾抖振的数值模拟[J].空气动力学学报,2007,25(2):205-210. 被引量:11
  • 5Wentz W H, Kohlman D L. Vortex-fin interaction of a fighter aircraft. AIAA -1987-2474, 1987.
  • 6Findlay D. Numerical analysis of vertical tail buffet. AIAA 1997-261, 1997.
  • 7Kandil O A, Massey S J, Kandil H A. Computations of vortex-breakdown indeeed tail buffet undergoing bending and torsional vibrations. AIAA-1994-1428, 1994.
  • 8Kandil O A, Sheta E F, Massey S J. Buffet responses of a vertical tail in vortex breakdown flows. AIAA-1995-3464, 1995.
  • 9Kandil O A, Sheta E F, Massey S J. Fluid/structure twin tail buffet response over a wide range of angle of attack. AIAA-1997 2261, 1997.
  • 10Kandil O A, Sheta E F, Coupled and uncoupled bendingtorsion responses of twin-tail buffet. Journal of Fluids and Structures, 1998, 12(6): 677-701.

共引文献37

同被引文献8

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部