期刊文献+

Determining Critical Support Discharge of a Riverhead and River Network Analysis: Case Studies of Lhasa River and Nyangqu River

Determining Critical Support Discharge of a Riverhead and River Network Analysis: Case Studies of Lhasa River and Nyangqu River
下载PDF
导出
摘要 A riverhead is the demarcation point of continuous water channel and seasonal channel, which is characterized by a critical flow that can support a continuous water body. In this study, the critical support discharge(CSD) is defined as the critical steady flows required to form the origin of a stream. The CSD is used as the criterion to determine the beginning of the riverhead, which can be controlled by hydro-climate factors(e.g., annual precipitation, annual evaporation, or minimum stream flow in arid season). The CSD has a close correlation with the critical support/source area(CSA) that largely affects the density of the river network and the division of sub-watersheds. In general, river density may vary with regional meteorological and hydrological conditions that have to be considered in the analysis. In this paper, a new model referring to the relationship of CSA and CSD is proposed, which is based on the physical mechanism for the origin of riverheads. The feasibility of the model was verified using two watersheds(Duilongqu Basin of the Lhasa River and Beishuiqu Basin of the Nyangqu River) in Tibet Autonomous Region to calculate the CSA and extract river networks. A series of CSAs based on different CSDs in derived equation were tested by comparing the extracted river networks with the reference network obtained from a digitized map of river network at large scales. Comparison results of river networks derived from digital elevation model with real ones indicate that the CSD(equal to criterion of flow quantity(Q_c)) are 0.0028 m^3/s in Duilongqu and 0.0085 m^3/s in Beishuiqu. Results show that the Q_c can vary with hydro-climate conditions. The Q_c is high in humid region and low in arid region, and the optimal Q_c of 0.0085 m^3/s in Beishuiqu Basin(humid region) is higher than 0.0028 m^3/s in Duilongqu Basin(semi-arid region). The suggested method provides a new application approach that can be used to determine the Q_c of a riverhead in complex geographical regions, which can also reflect the effect of hydro-climate change on rivers supply in different regions. A riverhead is the demarcation point of continuous water channel and seasonal channel, which is characterized by a criti- cal flow that can support a continuous water body. In this study, the critical support discharge (CSD) is defined as the critical steady flows required to form the origin of a stream. The CSD is used as the criterion to determine the beginning of the riverhead, which can be controlled by hydro-climate factors (e.g., annual precipitation, annual evaporation, or minimum stream flow in arid season). The CSD has a close correlation with the critical support/source area (CSA) that largely affects the density of the river network and the division of sub-watersheds. In general, river density may vary with regional meteorological and hydrological conditions that have to be considered in the analysis. In this paper, a new model referring to the relationship of CSA and CSD is proposed, which is based on the physical mechanism for the origin of riverheads. The feasibility of the model was verified using two watersheds (Duilongqu Basin of the Lhasa River and Beishuiqu Basin of the Nyangqu River) in Tibet Autonomous Region to calculate the CSA and extract river networks. A series of CSAs based on different CSDs in derived equation were tested by comparing the extracted river networks with the reference network obtained from a digitized map of river network at large scales. Comparison results of river networks derived from digital elevation model with real ones indicate that the CSD (equal to criterion of flow quantity (Qc)) are 0.0028 m3/s in Duilongqu and 0.0085 m3/s in Beishuiqu. Results show that the Qc can vary with hydro-climate conditions. The Qc is high in humid region and low in arid region, and the optimal Qo of 0.0085 m3/s in Beishuiqu Basin (humid region) is higher than 0.0028 m3/s in Duilongqu Basin (semi-arid region). The suggested method provides a new application approach that can be used to determine the Qo of a riverhead in complex geographical regions, which can also reflect the effect of hydro-climate change on rivers supply in different regions.
出处 《Chinese Geographical Science》 SCIE CSCD 2016年第4期456-465,共10页 中国地理科学(英文版)
基金 Under the auspices of National Natural Science Foundation of China(No.31070405) Knowledge Innovation Programs of Chinese Academy of Sciences(No.KZCX2-XB3-08)
关键词 拉萨河 网络分析 放电 数字高程模型 半干旱地区 案例 河网密度 气候变化影响 river network extraction Duilongqu Basin of Lhasa River Beishuiqu Basin of Nyangqu River critical support discharge hydro-climate conditions riverhead
  • 相关文献

参考文献11

二级参考文献124

共引文献602

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部