期刊文献+

失效信息随机缺失时可加危险率模型的统计推断

Statistic inference of additive hazards model when censoring indicators are missing at random
下载PDF
导出
摘要 对失效信息随机缺失时的可加危险率模型的估计进行研究.充分利用失效信息和缺失信息的概率模型的信息,通过构建估计方程,得到回归参数和基准累积风险函数的3个估计.证明了所提估计的渐近正态性,并进行数值模拟研究其有限样本性质.利用数值模拟研究比较所提估计与文献中的估计的有限样本性质,并通过分析一个实际数据验证了本文方法的有效性. In this work,we consider a semi-parametric additive hazards regression model for rightcensored data with censoring indicators missing at random. By employing the information of the response and censoring probability models,we propose three estimators of the regression coefficient and the baseline cumulative hazard function. We prove that the proposed estimators are consistent and asymptotically normal. Simulation studies are conducted to evaluate the numerical performance of the proposed estimators in comparison with the existing estimators. A real data set is analyzed to validate the effectiveness of the proposed methods.
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2016年第4期443-453,共11页 Journal of University of Chinese Academy of Sciences
基金 国家自然科学基金(10901162 U1430103 11571340) 中国科学院大学校长基金 中国科学院大数据挖掘与知识管理重点实验室开放课题 安徽省振兴计划团队项目(统计学前沿问题及应用)资助
关键词 删失信息 随机缺失 可加危险率模型 加权估计方程 插补估计 censoring information missing at random additive hazards regression model weighting estimating equation imputation estimating
  • 相关文献

参考文献16

  • 1Little R J A, Rubin D B. Statistical analysis with missing data [M]. 2nd ed. New York: John Wiley & Sons, 2002.
  • 2Lu K, Tsiatis A A. Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure [ J ]. Biometrics, 2001, 57 (4) : 1 191-1 197.
  • 3Wang Q, Linton O, Hardle W. Semiparametfic regression analysis with missing response at random [ J]. Journal of the American Statistical Association, 2004, 99 (466) : 334-345.
  • 4Sun Z, Wang Q. Semiparamctric estimation of survival function with cause of death data missing at random [J]. Journal of Applied Probability and Statistics, 2007, 2 : 189- 209.
  • 5Zhou X, Sun L. Additive hazards regression with missing censoring information [ J ]. Statistica Sinica, 2003, 13 (4) : 1 237-1 257.
  • 6Wang Q, Ng K W. Asymptotically efficient product-limit estimators with censoring indicators missing at random [ J ]. Statistica Siniea, 2008, 18 ( 2 ) :749-768.
  • 7Wang Q, Dinse G E. Linear regression analysis of survival data with missing censoring indicators [ J ]. Lifetime Data Analysis, 2011, 17(2) :256-279.
  • 8SUN ZhiHua,XIE TianFa,LIANG Hua.Statistical inference for right-censored data with nonignorable missing censoring indicators[J].Science China Mathematics,2013,56(6):1263-1278. 被引量:1
  • 9Lin D Y, Ying Z. Semiparametric analysis of the additive risk model[ J]. Biometrika, 1994, 81 ( 1 ) : 61-71.
  • 10Yin G, Cai J. Additive hazards model with multivariate failure time data[ J]. Biometrika, 2004, 91 (4) : 801-818.

二级参考文献15

  • 1Cheng P E. Nonparametric estimation of mean functionals with data missing at random. J Amer Statist Assoc, 1994, 89:81-87.
  • 2Dikta G. On semiparametric random censorship models. J Statist Plann Inference, 1998, 66:253-2?9.
  • 3Fan J, Gijbels I. Local Polynomial Modelling and its Applications. London: Chapman & Hall, 1996.
  • 4Foutz R V. On the unique consistent solution to the likelihood equations. J Amer Statist Assoc, 1977, 72:147-148.
  • 5Gao G, Tsiatis A A. Semiparametric estimators for the regression coefiocients in the flnear transformation competing risks model with missing cause of failure. Biometrika, 2005, 92:875-891.
  • 6Goetghebeur E, Ryan L. Analysis of competing risks survival data when some failure types are missing. Biometrika, 1995, 82:821-833.
  • 7Kaplan E L, Meier P. Nonparametric estimation from incomplete observatiois. J Amer Statist Assoc, 1958, 53: 457-481.
  • 8Lo S H, Singh K. The product-limit estimator and the bootstrap: Some asymptotic representations, Probab Theory Related Fields, 1986, 71:455-465.
  • 9Lo S H. Estimating a survival function with incomplete cause-of-death data. J Multivariate Anal, 1991, 39:217-235.
  • 10Lu W, Tsiatis A A. Semiparametric transformation models for the case-cohort study. Biometrika, 2006, 93:207-214.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部