期刊文献+

流道插件在高温和磁流体作用下的力学行为

Mechanical analysis of FCI under high temperature and MHD flow impact
下载PDF
导出
摘要 在国际热核聚变试验堆计划中,流道插件是包层模块中的一个重要部件,它的主要作用是隔热和电绝缘,它的力学行为受到高温、磁场、流体压力的共同作用,使得其响应分析成为一个多场耦合的问题.本文采用有限体积法和有限元法,对包层中流体传热性能和流道插件的结构安全性能进行计算,其中详细分析一种典型工况下流道插件的应力状态;同时,对具有不同热导率的流道插件进行计算,得出其对包层结构的影响.计算结果说明流道插件厚度方向以及面内方向的压应力均比较安全,而较危险的则为极向面内拉应力和棱边的剪切破坏.采用具有较低热导率的流道插件时,可以使出口金属流体的平均温度提高,从而提高热效率,同时降低第一壁的最高温度,从而保证其结构安全,但流道插件内部的温度梯度会增加,结构热应力也更高. In the ITER project,flow channel insert( FCI) serves as an indispensable electrical and thermal insulator. Mechanical behaviors of this component are affected by magneto-thermo-fluidstructure coupled fields. In this work,numerical investigations using finite volume method and finite element method were carried out to study flow pattern,heat transfer,and structural safety factors in the blanket module. Detailed stress analysis of FCI and influences caused by thermal conductivity were presented. Results show that FCI is basically safe considering through thickness stress and inplane compressive stress. However,the in-plane tensile stress and shear stress at edges are close to the material limit. Besides, FCI with good thermal insulating ability will lead to high outlet temperature of the flow and can well protect the first wall from bulk flow heat leakage. However,thetemperature gradient and thermal stress in FCI will increase in this case.
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2016年第4期462-467,共6页 Journal of University of Chinese Academy of Sciences
基金 国家自然科学基金(51376175) 国家科学技术部ITER专项(2013GB114001)资助
关键词 多物理场 包层结构 流道插件 热应力 流固耦合 multi-physics fields blanket module FCI thermal stress FSI
  • 相关文献

参考文献15

  • 1Hohkamp N. An overview of the ITER project [ J]. Fusion Engineering and Design, 2007,82: 427--434.
  • 2Wong C P C, Abdou M, Dagher M, et al. An overview of the US DCLL ITER-TBM program [ J ]. Fusion Engineering and Design, 2010,85:1 129-1 132.
  • 3Smolentsev S, Moreau R, Btihler L, et al. MHD thermofluid issues of liquid-metal blankets: phenomena and advances [J]. Fusion Engineering and Design, 2010, 85: 1 196- 1 205.
  • 4Wang H, Tang C. Preliminary analysis of liquid LiPb MHD flow and pressure drop in DWT blanket of FDS-I[ J ]. Fusion Engineering and Design, 2012,87:1 501-1 505.
  • 5Smolentaev S, Morley N B, Wong C, et al. MHD and heat transfer considerations for the US DCLL blanket for DEMO and ITER TBM[ J]. Fusion Engineering and Design, 2008, 83:1 788-1 791.
  • 6Vitkovsky I, Golovanov M, Divavin V, et al. Neutronic, thermal-hydraulic and stress analysis of RF lithium cooled test blanket module for ITER [J]. Fusion Engineering and Design, 2000,49 : 703-707.
  • 7Sharafat S, Aoyama A, Morley N, et al. Development status of a SiC-foam based flow channel insert for a US-ITER DCLL TBM [ J]. Fusion Science and Technology, 2009,56 : 883.
  • 8Sharafat S, Aoyama A, Ghoniem N, et al. Heat testing of a prototypieal SiC-foam-based flow channel insert [ J]. Plasma Science, IEEE Transactions on, 2010,38 : 2 993-2 998.
  • 9Ying A, Abdou M, Zhang H, et al. Progress on an integrated multi-physics simulation predictive capability for plasma chamber nuclear components [ J ]. Fusion Engineering and Design, 2010,85 : 1 681-1 688.
  • 10Smolentsev S, Morley N, Abdou M. Magnetohydrodynamic and thermal issues of the SiC f/SiC flow channel insert[ J]. Fusion Science and Technology, 2006,50 : 107-119.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部