摘要
In this paper, we consider the unboundedness of solutions for the asymmetric equation x00+ax+?bx?+?(x)ψ(x0)+f(x)+g(x0)=p(t), where x+ = max{x, 0}, x? = max{?x, 0}, a and b are two different positive constants, f (x) is locally Lipschitz continuous and bounded,?(x), ψ(x), g(x) and p(t) are continuous functions, p(t) is a 2π-periodic function. We discuss the existence of unbounded solutions under two classes of conditions: the resonance case √1a+ √1b ∈Q and the nonresonance case√1a + √1b /∈Q.
基金
Supported by the Tianyuan Special Foundation(11526148)
Supported by the National Natural Science Foundation of China(l1571187, 11461056)