期刊文献+

Unb ounded Motions in Asymmetric Oscillators Dep ending on Derivatives

Unb ounded Motions in Asymmetric Oscillators Dep ending on Derivatives
下载PDF
导出
摘要 In this paper, we consider the unboundedness of solutions for the asymmetric equation x00+ax+?bx?+?(x)ψ(x0)+f(x)+g(x0)=p(t), where x+ = max{x, 0}, x? = max{?x, 0}, a and b are two different positive constants, f (x) is locally Lipschitz continuous and bounded,?(x), ψ(x), g(x) and p(t) are continuous functions, p(t) is a 2π-periodic function. We discuss the existence of unbounded solutions under two classes of conditions: the resonance case √1a+ √1b ∈Q and the nonresonance case√1a + √1b /∈Q.
出处 《Chinese Quarterly Journal of Mathematics》 2016年第2期189-200,共12页 数学季刊(英文版)
基金 Supported by the Tianyuan Special Foundation(11526148) Supported by the National Natural Science Foundation of China(l1571187, 11461056)
关键词 unboundedness RESONANCE nonresonanae unboundedness resonance nonresonance
  • 相关文献

参考文献1

二级参考文献9

  • 1A. C. Lazer,D. E. Leach.Bounded perturbations of forced harmonic oscillators at resonance[J].Annali di Matematica Pura ed Applicata Series.1969(1)
  • 2Dancer,E.Boundary-value problems for weakly nonlinear ordinary differential equations, Bull[].Austral Math Soc.1976
  • 3Qian,D.Infinity of subharmonics for asymmetric Duffing equations with Lazer-Leach-Dancer condition, J[].Differential Equations.2001
  • 4Ortega,R.Asymmetric oscillators and twist mappings, J[].London Mathematical Society.1996
  • 5Liu,B.Boundedness of solutions for semilinear Duffing equation, J[].Differential Equations.1998
  • 6Ortega,R.Boundedness in a piecewise linear oscillator and a variant of the small twist theorem, Proc[].London Mathematical Society.1999
  • 7Liu,B.Boundedness in asymmetric oscillations, J.Math[].Anal Appl.1999
  • 8Jacobowitz,H.Periodic solutions of x" + f(x, t) = 0 via the Poincare -Birkhoff theorem, J[].Differential Equations.1976
  • 9Franks,J.Generalizations of the Poincare-Birkhoff theorem, Ann[].Mathematica Journal.1988

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部