期刊文献+

基于凸半定规划的接收信号强度测距的合作式定位方案 被引量:1

Convex Semidefinite Programming Based RSS Ranging Cooperative Localization Scheme
下载PDF
导出
摘要 无线传感网中的多类应用均需要准确的定位算法。为了降低定位成本,减少能量消耗,常采用基于接收信号强度RSS(received signal strength)测距;再利用最大似然ML(maximum likelihood)估计法求解节点的位置。然而,ML估计为非线性、非凸性,难以获取全局最优解;为此,提出凸半定规划SDP(semidefinite programming)的合作式定位方案,利用凸半定规划策略将ML估计转换成凸优问题;同时,该方案考虑两类场景:源节点发射功率已知、未知。针对第一类场景,利用半凸松弛策略,并结合最小化最小二乘法,建立凸优表达式,最后利用CVX求解。针对第二类场景,先建立联合ML估计函数,再利用SDP估计,并结合起来简单的三步骤方案进行位置估计。仿真结果表明,提出的SDP算法的定位精度比SD/SOCP-1、SDPRSS平均提高了近15%~20%。此外,提出的SDP算法在所有场景的误差小于3 m的出现概率占0.8,而SD/SOCP-1、SDPRSS算法小于0.5。 In the wireless sensor networks,location based applications require an accurate localization algorithm.To locate sensors at a low cost,the received signal strength( RSS) based ML(maximum likelihood) estimator is used to localization.However,the difficulties in the ML problem are overcome by transforming the original nonconvex and nonlinear problem into a convex one,which is difficult to solve the globally optimal solution.Therefore,the convex semidefinite programming(SDP) localization scheme is proposed for both cases of known and unknown source transmit power.For the first case,applying semidefinite relaxation address the nonconvex problem,following least squares(LS) minimization,and form the SDP problem,which can be readily solved by CVX.For the second case,propose a simple three-step procedure to localization.For all the scenarios presented in this work,the new approach outperforms the state-of-the-art approaches with an increase in the accuracy between 15% ~ 20%on average.Furthermore,the simulation results show that our approach achieves ME less than 3 m in 80% of the cases,while the existing ones accomplish the same accuracy in less than 50% of the cases.
作者 黎慧 唐友刚
出处 《科学技术与工程》 北大核心 2016年第19期264-269,共6页 Science Technology and Engineering
基金 广西自然科学基金(2014GXNSFBA118286)资助
关键词 接收信号强度 半定规划 凸松弛 合作式定位 无线传感网 received signal strength semidefinite programming convex relaxation cooperative localization wireless sensor networks
  • 相关文献

参考文献17

  • 1Bulusu N, Heidemann J, Estrin D. zation for very small devices. IEEE zine, 2012;7(5) :28-34.
  • 2GPS-less low cost outdoor locali Personal Communications Maga Langendoen K, Reijers N. Distributed localization in wireless sensor networks: a quantitative comparison. Computer Networks, 2013;43 (4) : 499-518.
  • 3Xiao Q, Xiao B, Cao J,et al. Multihop range-free iealization in ani- sotropic wireless sensor networks: a pattern-drive seheme. IEEE Trans Mobile Comput,2013 ;9( 11 ) : 1592-1607.
  • 4Li X. Collahoratlve localization with received-signal strength in wire- less sensor networks. 1EEE Trans Veh Technol, 2007 ;56(6) :3807- 3817.
  • 5Lui K W K, Ma W K, So H C ,et al. Semi-Definite programming algo- rithms for sensor network node localization with uncertainties in an- chor positions and/or propagation speed. IEEE Trans Signal Process, 2009 ; 57 ( 2 ) : 752-763.
  • 6Ouyang R W, Wong A K S, Lea C T. Received signal strength-based wireless localization via semidefinite programming: noncooperative and cooperative schemes. IEEE Trans. Veh Technol, 2010 ; 59 ( 3 ) : 1307-1318.
  • 7Wang G, Yang K. A new approach to sensor node localization using RSS measurements in wireless sensor networks. IEEE Trans Wireless Commun, 2011 ; 10 (5) : 1389-1395.
  • 8Vaghefi R M, Gholami M R, Strom E G. RSS-based sensor localiza- tion with unknown transmit power. Proc of IEEE ICASSP, 2011: 2480-2483.
  • 9Chen H, Wang G, Wang Z, et al. Non-lineof-sight node localization based on semi-definite programming in wireless sensor networks. IEEE Trans Wireless Commun, 2012 ; 11 ( 1 ) : 1085-116.
  • 10Wang G, Chen H, Li Y, et al. On received-signal-strength based localization with unknown transmit power and path loss expo- nent. IEEE Wireless Commun Letters, 2012;1 (5) : 536-539.

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部