期刊文献+

Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms 被引量:1

Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms
下载PDF
导出
摘要 The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1. The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期138-144,共7页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China(Grant No.2012CB922103) the National Natural Science Foundation of China(Grant Nos.11274104 and 11404108)
关键词 quantum optics quantum entanglement binomial optical field negative eigenvalue quantum optics quantum entanglement binomial optical field negative eigenvalue
  • 相关文献

参考文献30

  • 1Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (London: Cambridge Univ. Press).
  • 2Plenio M B and Vedral V 1998 Phys. Rev. A 57 1619.
  • 3Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 381.
  • 4Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895.
  • 5Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2882.
  • 6Phoenix S J D and Kinght P L 1988 Ann. Phys. 186 381.
  • 7Wu Y and Yang X X 1997 Phys. Rev. A 56 2443.
  • 8Wu Y 1996 Phys. Rev. A 54 1586.
  • 9Fang M F and Zhou G H 1994 Phys. Lett. A 184 397.
  • 10Liu X J and Fang M F 2002 Chin. Phys. 11 926.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部