期刊文献+

带有Hardy和临界指标项的非齐次椭圆方程的解

On Nonhomogeneous Elliptic Problems Involving Hardy Potential and Critical Sobolev Exponent
原文传递
导出
摘要 考虑了带有Hardy和临界指标项的非齐次椭圆方程,当非齐次项f满足特定的条件时,得到了方程有两个正解. The Schr?dinger equations with Hardy potential and critical Sobolev exponent are concerned.Under appropriate assumptions,then equation admits at least two solutions.
作者 张靖 吴秋月
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期25-32,共8页 Acta Scientiarum Naturalium Universitatis Nankaiensis
关键词 非齐次 临界指标 正解 nonhomogeneous critical Sobolev exponent positive solution
  • 相关文献

参考文献9

  • 1Cao D M, Peng S J. A note on the sign-changing solution to elliptic problems with critical Sobolev and Hardy terms[J]. J Differential Equations, 2003, 193: 424-434.
  • 2Chen Z J, Zou W M. On an elliptic problem with critical exponent and Hardy potential[J]. J Differential Equa- tions,2012, 252: 969-987.
  • 3Tarantello G. On nonhomogeneous elliptic problems involving critical Sobolev exponent[J]. Ann Inst H Poincar Analyse Non Linaire, 1992, 9: 281--304.
  • 4Wang Z P, Zhou H S. Solutions for a nonhomogeneous nent in RN [J]. Acta Mathematica Scientia, 2006, 26B(3) elliptic problem involving critical Sobolev-Hardy expo- 525--536.
  • 5Catrina F, Wang Z Q. On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexis- tence),and symmetry of extermal functions[J]. Comm Pure Appl Math, 2001, 54: 229-258.
  • 6Aubin J P, Ekeland I. Applied Nonlinear Analysis, Pure and Applied Mathematic[Ml. [S.1.]: Wiley, 1984.
  • 7Cao D M, Zhou H S. Multiple poitive solutions of nonhomogeneous semilinear elliptic equations in RN [J]. Pro- ceedings of the Royal Society of Edinburgh, 1996, 126A: 443-463.
  • 8Brezis H, Lieb E. A relation between pointwise convergence of functions and convergence of integrals[J]. Proc Amer[J]. Math Soc, 1983, 88: 486--490.
  • 9Deng Y B, Jin L Y, Peng S J. Solutions of Schrodinger equations wih invere square potential and critical non- linearity[J]. J Differemial Equations, 2012, 252:1 376-1 398.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部