期刊文献+

基于外观和深度信息的视觉跟踪算法研究

Visual tracking algorithm based on appearance feature and depth information
下载PDF
导出
摘要 能够实现视觉导航的自主移动机器人具有很好的应用前景,而场景变化、目标运动、障碍、遮档等是自主机器人视觉导航过程经常遇到的问题,结合外观特征和深度信息的目标检测和跟踪算法是提高自主机器人对目标及环境变化适应能力的重要途径。文章结合人类在跟踪和定位目标时既利用颜色、亮度、形状、纹理等外观特征,又利用物体间距离、深度信息的特点,提出了结合外观特征和深度信息的目标跟踪算法并通过实验验证了该算法对视角、运动、遮挡等因素所引起变化的适应能力,且利用定量的方法对算法的性能进行了评价。 Challenges that robot faces in vision-based navigation include scene change, appearance change, obstacle, occlusion etc. Imitating human vision perception, an object detection and tracking algorithm that combines appearance feature and depth information is proposed. First, RGB image and depth information are captured by the Kinect camera that works as the vision system of robot. Then, an appearance model is created with features extracted from RGB image. A motion model is created on plan-view map produced from depth information and camera parameters, and the estimation of object position and scale is performed on the motion model. Finally, appearance features are combined with position and scale information to track the target. Experimental result show the robustness of our object detection and tracking method to appearance changes arose from view, motion and occlusion factors. It also shows that the object detection efficiency and object tracking accuracy are improved greatly compared with the method that only employ the appearance features.
作者 刘学 戚文静
出处 《山东建筑大学学报》 2016年第2期177-182,共6页 Journal of Shandong Jianzhu University
基金 山东省自然科学基金(ZR2013FL024) 山东建筑大学博士科研基金(XNBS1261)
关键词 视觉导航 目标跟踪 外观特征 深度信息 vision-based navigation object tracking appearance feature depth information
  • 相关文献

参考文献16

  • 1Francisco B., Alberto O. , Gabriel 0.. Visual navigation for mobile robots : A survey I J 1- Journal of Intelligent and Robotic Systems, 2008, 53 (3) : 263 - 296.
  • 2Babonko M. , Yang H. , Belangie S.. Robust object tracking with online multiple instance learning [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33 (8) :1619 - 1632.
  • 3Peter H., Michael K., Evan H., et al.. Dieter RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments[ J]. The International Journal of Robotics Research ,2012, 31 ( 5 ) :647 - 663,.
  • 4Rafael M. , Yeguas B. L. ,Dfaz M. , et al.. Shape from pairwise silhouettes for plan-view map generation [ J ]. Image and Vision Computing, 2012, 30(2) :122-133.
  • 5尚晓清,宋宜美.一种基于扩散映射的非线性降维算法[J].西安电子科技大学学报,2010,37(1):130-135. 被引量:7
  • 6夏鲁瑞,胡茑庆,秦国军.基于流形学习的涡轮泵海量数据异常识别算法[J].航空动力学报,2011,26(3):698-703. 被引量:9
  • 7彭爽,彭晓明.基于高效多示例学习的目标跟踪[J].计算机应用,2015,35(2):466-469. 被引量:8
  • 8Gu. S. , Zheng. Y. , Tomasi C.. Efficient Visual Object Trackingwith Online Nearest Neighbor Classifier [ C ]. Proceedings of the 10 the Asia conference on compnler vision, Durham: Doke University ,2011.
  • 9Lampert H. , Blaschko B. , Hofman T.. Efficient subwindow search: A branch and bound framework for object localization [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (12) :2129 -2142.
  • 10Ess A. , Leibe B. Cool L.. Depth and Appearance for Mobile Scene Analysis [ J ]. Communication in Complater & Information Science ,2012,7 : 110 - 118.

二级参考文献52

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2肖刚,刘三阳,尹小艳.微分流形上的最优化算法[J].西安电子科技大学学报,2007,34(3):472-475. 被引量:7
  • 3Partridge M, Calyo R. Fast Dimensionality Reduction and Simple PCA[J]. Intelligent Data Analysis, 1997, 2(3) : 292- 298.
  • 4Hyvrinen A. Survey on Independent Component Analysis[J]. Neural Computing Surveys, 1999, 2(4): 94-128.
  • 5Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000(290): 2319-2323.
  • 6Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000(290): 2323-2326.
  • 7Belldn M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation [J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 8Zhang Zhenyue, Zha Hongyuan. Priciple Manifolds and Nonlinear Dimensionality Reduction Via Local Tangent Space Alignment[J]. SIAM Journal of Scientific Computing, 2005, 26(1):313-338.
  • 9Nadler B, Lafon S, Coifman R R, et al. Diffusion Maps, Spectral Clustering and the Reaction Coordinate of Dynamical Systems [J]. Applied and Computation Harmonic Analysis: Special Issue on Diffusion Maps and Wavelets, 2006, 21(1) : 113-127.
  • 10Coifman R R, Kevrekidis I G, Lafon S, et al. Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stoehastie Systems[J]. Multiseale Model and Simulation, 2008, 7(2) : 842-864.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部