期刊文献+

一种全新的两步自动化医学图像分割方案 被引量:4

A New Two-step Automatic Segmentation Scheme for Medical Images
下载PDF
导出
摘要 针对现有图像分割方法存在需要手动分割,以及精确度较低的问题。采用一种全新的两步图像分割方案。该方案。以基于人工神经网络的模式识别技术,即人工神经网络的大规模培训的方法,通过对肺区不同子区域内结构进行分割处理,利用训练好的大规模人工神经网络对标准胸片中的肋骨、锁骨等骨质结构进行抑制,结合以基于区域的活动轮廓模型,即Snake模型,正确分割亮度不均匀的图像。文中选择与医护人员人工分割的图像进行对比,通过放射科医生采用等级法打分,原图的平均分为2.0分,而通过文中改进的分割方法平均分高达3.4分。 This paper proposed a new image segmentation scheme to solve the manual segmentation by and the poor accuracy of existing image segmentation methods. Firstly,the massive- training artificial neural networks( MTANNs) are employed to suppress bones in the lungs,using artificial neural network trained on a large scale of standard chest radiograph of the ribs,clavicle,such as inhibition of bone structure. Then active contour model( ACM) based on region,or the Snake Mode,is adopted to segment correctly images with non- uniform brightness.A comparison with images manually segmented by medical personnel and rated by radiologists shows that the average score of the original images is 2. 0 points while that by our improved segmentation method is 3. 4 points.
作者 何菁 陈胜
出处 《电子科技》 2016年第7期85-87,共3页 Electronic Science and Technology
关键词 人工神经网络 活动轮廓模型 医学图像分割 artificial neural network active contour model medical image segmentation
  • 相关文献

参考文献8

  • 1林瑶,田捷.医学图像分割方法综述[J].模式识别与人工智能,2002,15(2):192-204. 被引量:125
  • 2韦明祥,陈俊.基于C-V模型的医学图像分割方法[J].电子科技,2012,25(5):101-104. 被引量:6
  • 3Kenji Suzuki. Image processing technique for suppressing ribs in chest radiographs by means of massive training artifi- cial neural network ( MTANN ) [ J ]. IEEE Transactions on Medical Imaging,2006,25 ( 4 ) :406 - 416.
  • 4Sheng Chen, Kenji Suzuki. Bone suppression in chest radio- graphs by means of anatomically specific multiple massive - training ANNs [ C ]. Tsukuba: International Conference on Pattern Recognition,2012.
  • 5李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 6Song Chun Zhu,Alan L Yuille. Region competition, unifying snakes,region growing,and Bayed/MDL for muhiband image segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18 (9) : 884 - 900 .
  • 7Li Chunming,Kao Chiuyen,John C Gore,et al. Minimization of region- scalable fitting energy for image segmentation [ J ]. IEEE Transactions on Image Processing,2008,17 (10) : 1940 - 1949.
  • 8Nikos Paragios, Olivier Mellina - Gottardo, Visvanathan Ramesh. Gradient vector flow fast geometric active contours [ J ]. IEEE Transactions on Pattern Analysis and Machine Ira- telligence ,2004,26 ( 3 ) :402 - 407.

二级参考文献16

  • 1Marr D 姚国正等(译).视觉计算理论[M].科学出版社,1988..
  • 2罗希平.生物信息处理:对自动指纹识别和医学图像分割的研究,博士论文[M].中国科学院自动化研究所人工智能实验室,2000..
  • 3KASS M, WITKIN A. TERZOPOULOS D. Snakes:active con- tour models [ J]. International Journal of Computer Vision, 1987,1 (4) :321 -331.
  • 4CASELLES V, CATFE T, COLL T, et al. A geometric model for active contours in image processing [ J ]. Numeric Math, 1993,66(1) :1 -31.
  • 5aLI Chunming,XU Chenyang,GUI Changfeng, et al. Level set evolution without re - initialization : a new variational formula- tion [ C]. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( C - VPR'05 ) ,2005,1:430 -436.
  • 6aCHAN L V. Active contours model without edges [J]. IEEE Transactions on Image Processing, 2001,10 (2) : 266 - 277.
  • 7田捷.实用图像处理技术[M].北京:电子工业出版社,1994..
  • 8Xu C,IEEE Trans Image Processing,1998年,7卷,3期,359页
  • 9Amini A A,IEEE Transactions Medical Imaging,1998年,17卷,3期,344页
  • 10Jolly M P D,IEEE Transactions on Pattern Analysis and Machine Intelligence,1996年,18卷,3期,293页

共引文献248

同被引文献16

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部