期刊文献+

压痕对车轴钢疲劳极限的影响 被引量:4

Indentation effect on the fatigue limit of axle steel
原文传递
导出
摘要 利用硬度计在光滑沙漏状车轴钢疲劳试样上制造压痕,同时利用电火花在试样上加工缺陷,通过疲劳试验研究两种缺陷尺寸与试样疲劳极限之间的关系.将两类试样的测试结果和基于材料硬度、缺陷投影面积的Murakami模型计算结果进行对比.利用扫描电镜观察试样疲劳断口.结果表明,与计算结果相比较,压痕局部塑性变形导致的加工硬化和残余应力对试样的疲劳强度没有影响,裂纹依然从应力集中最大的压痕底部起裂.电火花缺陷表面粗糙度较大引起二次缺口效应,表面硬脆的重铸白层上还有微孔和微裂纹存在,导致此类试样疲劳强度低于模型计算结果,裂纹从电火花缺口底部多处萌生. A hardness tester was used to make indentations on the hourglass fatigue specimens of axle steel,and notches were machined by electronic discharge machining( EDM).The fatigue limits of both indentation specimens and notched ones were examined and compared with the theoretical values according to the Murakami formula based on material hardness and defect projected area.The fracture surface was observed by scanning electron microscopy.It is found that local work hardening and residual stress caused by plastic deformation of indentations have no significant effect on the fatigue limits in comparison with the predicted values by the Murakami equation.Fatigue cracks originate from the bottom of indentations due to stress concentration effect.The fatigue limits of notched specimens are lower than the calculated values because of secondary notches caused by the high roughness of notch surfaces and the existence of microcracks and micropores within the re-cast layers.Cracks initiate from multiple sites on the bottom of electronic discharge machining notches.
出处 《工程科学学报》 EI CSCD 北大核心 2016年第6期827-833,共7页 Chinese Journal of Engineering
基金 材料成型与模具技术国家重点实验室开放课题(P2015-10)
关键词 车轴钢 疲劳性能 压痕 缺口 应力集中 axle steel fatigue behavior indentation notches stress concentration
  • 相关文献

参考文献26

  • 1Smith R A, Hillmansen S. A brief historical overview of the fa- tigue of railway axles. Proc lnst Mecb Eng Part F, 2004, 218 (4) : 267.
  • 2Zerbst U, Beretta S, Kohler G, et al. Safe life and damage toler- ance aspects of railway axles: a review. Eng Fraet Mech, 2013, 98(2) : 214.
  • 3Smith R A. Railway fatigue failures: an overview of a long stand- ing problem. Materialwiss Werkstotfieeb, 2005, 36( 11 ) : 697.
  • 4Luke M, Varfolomeev I, Lutkepohl K, et al. Fatigue crack growth in railway axles: Assessment concept and validation tests. Eng Fract Mech, 2011, 78(5): 714.
  • 5Beretta S, Carboni M, Conte A L, et al. An investigation of the effects of corrosion on the thtigue strength of AIN axle steel. Proc lnst Mech Eng Part F, 2008, 222 (2) : 129.
  • 6Pidaparti R M, Patel R K. Investigation of a single pit/defect evo- lution during the corrosion process. Corros Sci, 2010, 52 (9): 3150.
  • 7Cerit M, Genel K, Eksi S. Numerieal investigation on stress con- centration of corrosion pit. Eng Fail Anal, 2009, 16(7) : 2467.
  • 8Cerit M. Numerical investigation on torsional stress concentration factor at the semi elliptical corrosion pit. Corros Sci, 2013, 67 (1): 225.
  • 9Beretta S, Carboni M, Fiore G, et al. Corrosion-fatigue of AIN railway axle steel exposed to rainwater, lnt J Fatigue, 2010, 32 (6) : 952.
  • 10Beretta S, Carboni M, Conte A L, et al. Crack growth studies in railway axles under corrosion fatigaae: full-scale experimcnts and model validation. Procedia Eng, 2011, 10(7): 3650.

二级参考文献48

共引文献28

同被引文献8

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部