期刊文献+

单脉冲噪声驱动的分数阶调和振子的均方位移(英文) 被引量:1

Mean square displacement of fractional harmonic oscillator driven by an impulsive noise
下载PDF
导出
摘要 通过光钳实验获取粒子的均方位移并据此建模是微观流变学中计算介质的局部响应函数的常用方法之一.本文考虑单脉冲噪声驱动的分数阶调和振子的均方位移.利用Laplace变换及双Laplace变换技巧,本文得到了振子的均值、方差及相关函数,进而求得均方位移.然后本文基于均方位移的渐近行为研究了振子的短时及长时扩散行为.研究表明,振子的短时扩散是弹道的而在长时则幂律地趋近于均衡值. Mean square displacements have oeen extensively - of viscoelastic medium in laser tweezer experiments. In this paper, by using the Laplace and double La- place transform techniques, we obtain the exact expression of position of a fractional harmonic oscillator driven by an impulsive noise. Then, the mean, variance, correlation function and mean square displacement of the oscillator are given in terms of the time-lag. Furthermore, diffusive behavior of the oscillator for short and long time-lag is investigated by considering the asymptotic behavior of the mean square displacement. It is shown that the oscillator undergoes a ballistic motion for short time-lag and a power- law decay to an equilibrium position for long time-lag.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期743-747,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11171238) 桥梁无损检测与工程计算四川省高校重点实验室开放基金(2015QYJ06)
关键词 均方位移 分数阶调和振子 脉冲噪声 Key words. Mean square displacement~ Fractional harmonic oscillator Impulsive noise(2010 MSC 26A33, 33E20, 33E30)
  • 相关文献

参考文献15

  • 1Mason T G, Weitz D A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids [J]. Phys Rev Lett, 1995, 74 (7): 1250.
  • 2Mason T G, Ganesan K, van Zan ten J H, et al. Particle tracking microrhology of complex fluids [J]. Phys Rev Lett, 1997, 79(17): 3282.
  • 3Mason T G. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation [J]. Rheol Acta, 2000, 39: 371.
  • 4Burov S, Barkai E. Fractional Langevin equation: overdarnped , underdamped and critical behavior [J]. Phys Rev E, 2008, 78: 031112.
  • 5Lutz E. Fractional Langevin equation [J]. Phys Rev E, 2001, 34: 051106.
  • 6Kwok SF. Generalized Langevin equation with fractional derivative and long-time correlation function [J]. Phys Rev E, 2006, 73: 061104.
  • 7Goychuk I. Fractional Brownian motors and sto- chastic resonance [J]. Phys Rev E, 2012, 85: 051131.
  • 8Gemant A. A method of analyzing experimental results obtained from elasto-viscous bodies [J]. Physics, 1936, 7: 311.
  • 9Helfer E, Harlepp S, Bourdieu L, et at. Microrheology of biopolymer-membrane complexes [J]. Phys Rev Lett, 2000, 85(2): 457.
  • 10Desposito M A, Vinales A D. Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function [J]. Phys Rev E, 2009, 80: 021111.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部