期刊文献+

基于KL散度及多尺度融合的显著性区域检测算法 被引量:16

Salient Region Detection Algorithm via KL Divergence and Multi-scale Merging
下载PDF
导出
摘要 基于对超像素颜色概率分布间KL散度的计算,以及对多尺度显著图的融合处理,该文提出一种新的显著性区域检测算法。首先,采用超像素算法多尺度分割图像,在各尺度下用分割产生的超像素为节点,并依据超像素分割数量对各超像素进行适当邻接连通扩展,构建无向扩展闭环连通图。其次,依据颜色判别力聚类量化各超像素内颜色,统计颜色聚类标签的概率分布,用概率分布间KL散度的调和平均值为扩展闭环连通图的边加权,再依据区域对比度并结合边界连通性,获取各尺度下的显著图。最后,平均融合各尺度下显著图,并进行优化处理,得到最终的显著图。在一些大型参考数据集上进行大量实验表明,所提算法优于当前一些先进算法,具有较高精确度和召回率,并且可以产生平滑显著图。 A new salient region detection algorithm is proposed via KL divergence between color probability distributions of super-pixels and merging multi-scale saliency maps. Firstly, multi-scale super-pixel segmentations of an input image are computed. In each segmentation scale, an undirected close-loop connected graph is constructed, in which nodes are the super-pixels and the adjacent regions are expanded reasonably relying on the total number of super-pixels. Then, all the color values in each super-pixel are clustered in terms of their discriminative power to get the statistical probability distribution of the cluster labels for each super-pixel. Next, the edges between all adjacent super-pixel pairs are weighted with the harmonic-mean of KL divergence of their probability distributions, and then the multi-scale saliency maps are calculated according to boundary connectivity and region contrast. The final saliency map is obtained by calculating and optimizing the mean map of all the saliency maps with different scales. Experimental results on some large benchmark datasets demonstrate that the proposed algorithm outperforms some state-of-the-art methods, and has higher precision and recall rates. The proposed algorithm can also produce smooth saliency maps.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第7期1594-1601,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61105042 61462035) 江西省青年科学家培养项目(20153BCB23010)~~
关键词 显著性区域检测 多尺度融合 KL散度 闭环连通图 Salient region detection Multi-scale merging KL divergence Close-loop connected graph
  • 相关文献

参考文献24

  • 1ITTI L, KOCH C, and NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 2YANG J and YANG M H. Top-down visual saliency via joint CRF and dictionary learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012: 2296-2303.
  • 3TONG N, LU H, RUAN X, et al. Salient object detection via bootstrap learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 1884-1892.
  • 4JIANG H. Weakly supervised learning for salient object detection using background images[OL]. http://arxiv.org/ pdf/1501.07492.pdf , 2015.
  • 5ZHAO R, OUYANG W, LI H, et al. Saliency detection by multi-context deep learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 1265-1274.
  • 6YAN Q, XU L, SHI J, et al. Hierarchical saliency detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, 2013: 1155-1162.
  • 7ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 2814-2821.
  • 8YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3166-3173.
  • 9TONG N, LU H, ZHANG Y, et al. Salient object detection via global and local cues[J]. Pattern Recognition, 2015, 48(10): 3258-3267.
  • 10KIM J, HAN D, TAI Y W, et al. Salient region detection via high-dimensional color transform[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 883-890.

二级参考文献39

  • 1Itti L, Koch C, and Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 2Achanta R, Estrada F, Wils P, et al.. Salient region detection and segmentation[C]. Proceedings of the 6th International Conference on Computer Vision Systems, Santorini, Greece, 2008: 66-75.
  • 3Hou X and Zhang L. Saliency detection: a spectral residual approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007: 1-8.
  • 4Kim C, Kim J, and Sim J. Multiscale saliency detection using random walk with restart[J]. IEEE Transactions on Circuits and Systems ]or Video Technology, 2014, 24(2): 198-210.
  • 5Perazzi F, Krahenbuhl P, Pritch Y, et al.. Saliency filters: contrast based filtering for salient region detection[C]. Proceeding of IEEE International Conferrence of Computer Vision and Pattern Recognition, RI, USA, 2012: 733-740.
  • 6Wei Yi-chen, Wen Fang, and Zhu Wang-jiang. Geodesic saliency using back ground priors[C]. Proceeding of the European Conference on Computer Vision 2012: Part III, Florence, Italy, 2012: 29-42.
  • 7Veksler O, Boykov Y, and Mehrani P. Superpixels andsupervoxels in an energy optimization framework[C]. Proceeding of the European Conference on Computer Vision 2010, Berlin Heidelberg 2010: 211-224.
  • 8Achanta R, Hemami S, Estrada F, et al.. Frequency-tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009: 1597-1604.
  • 9Cheng M, Zhang G, Mitra N, et al.. Global contrast based salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011: 409-416.
  • 10Zhai Y and Shah M. Visual attention detection in video sequences using spatiotemporal cues[C]. Proceedings of ACM Multimedia, Santa Barbara, CA, USA, 2006: 815-824.

共引文献26

同被引文献69

引证文献16

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部