期刊文献+

Pt-Ni/MWCNTs复合催化剂的制备及电化学性能 被引量:1

Preparation and Electrochemical Performance of Pt-Ni/MWCNTs Composite Catalysts
下载PDF
导出
摘要 采用溶液还原法将铂镍负载于多壁碳纳米管(MWCNTs)制备Pt-Ni/MWCNTs复合催化剂。利用透射电子显微镜(TEM)、X射线衍射仪(XRD)对制备的复合催化剂进行结构表征,结果表明,铂镍均匀负载到碳纳米管上,Pt-Ni粒子粒径约为2 nm。XRD分析结果表明,复合催化剂是以Pt晶格为基础的固溶体结构。采用循环伏安法和计时电流法在碱性条件下对Pt-Ni/MWCNTs修饰电极进行电化学性能测试,结果表明,Pt-Ni/MWCNTs可直接催化葡萄糖氧化,对葡萄糖的灵敏度为571.68μA·mmol/(L·cm^2),线性范围1.0×10^(-5)~8.2×10^(-3)mol/L(R=0.999 4),检测限为0.5μmol/L(S/N=3)。此外,该电极对葡萄糖有良好的电催化氧化性能,且选择性和重现性好,可有效避免抗坏血酸、尿酸和多巴胺的干扰。 A Pt-Ni / MWCNTs composite catalyst was successfully synthesized with platinum and nickel supported on multi-walled carbon nanotubes( MWCNTs) by impregnation-reduction method. The structure of the as-prepared composite catalyst was characterized by transmission electron microscopy( TEM) and X-ray diffractometer( XRD). The results show that Pt and Ni are uniformly loaded onto the carbon nanotubes. The Pt-Ni composite catalyst has an approximate particle size of 2 nm. XRD analysis demonstrates that the composite catalyst has a solid solution structure based on Pt crystal lattice. The electrochemical performance of the modified electrode by Pt-Ni / MWCNTs was evaluated by cyclic voltammetry and chronoamperometry in alkaline media. Electrochemical measurements indicate the Pt-Ni / MWCNTs catalyst can directly catalyze the oxidation of glucose and has a selectivity of571. 68 μA · mmol /( L · cm^2) towards glucose oxidation. The prepared electrode displays a wide linear range from 10 μmol / L to 8. 2 mmol / L( R = 0. 999 4) with the limit of detection of 0. 5 μmol / L( S /N = 3). Moreover,the electrode has an excellent electrocatalytic oxidation glucose,selectivity and repeatability. It can efficiently avoid the interferences from the oxidation of ascorbic acid,uric acid and dopamine.
出处 《精细化工》 EI CAS CSCD 北大核心 2016年第7期797-802,共6页 Fine Chemicals
基金 国家高技术研究发展计划(863计划)(2012AA052201) 北京市教育委员会科技发展计划重点项目(KZ201310005001) 北京市教委科研计划面上项目(KM201210005008) 新世纪优秀人才支持计划资助(NCET-12-0603)~~
关键词 Pt-Ni/MWCNTs催化剂 电催化氧化 电化学 葡萄糖 Pt-Ni / MWCNTs catalyst electrocatalytic oxidation electrochemical glucose
  • 相关文献

参考文献2

二级参考文献48

  • 1Liu, X.; Chen, J.; Liu, G.; Zhang, L.; Zhang, H. M.; Yi, B. L. J. Power Sources 2010, 195, 4098.
  • 2Li, W. Z.; Zhou, W. J.; Li, H. Q.; Zhou, Z. H.; Zhou, B.; Sun, G. Q.; Xin, Q. Electrochim. Acta 2004, 49, 1045.
  • 3Yang, C. W.; Wang, D. L.; Hu, X. G.; Dai, C. S.; Liang, Z. J. Alloy. Compd. 2008, 448, 109.
  • 4Wang, X. M.; Li, N.; Pfefferle, L. D.; Hailer, G. L. J. Phys. Chem., C2010, 114, 16996.
  • 5Tang, H.; Chen, J. H.; Nie, L. H.; Liu, D. Y.; Deng, W.; Kuang, Y. F.; Yao, S. Z. J. Colloidlnterface Sci. 2004, 269, 26.
  • 6Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M.J. Nanosci. Nanotechnol. 2003, 3, 247.
  • 7Yen, C. H.; Shimizu, K.; Lin, Y. Y.; Bailey, F.; Cheng, I. F.; Wai, C. M. Energy Fuels 2007, 21, 2268.
  • 8Shimazaki, Y.; Hayasaka, S.; Koyama, T.; Nagao, D.; Kobayashi, Y.; Konno, M. J. Colloid lnterface Sci. 2010, 350, 580.
  • 9Zhao, Y.; E, Y. F.; Fan, L. Z.; Qiu, Y. F.; Yang, S. H. Electrochim. Acta 2007, 52, 5873.
  • 10Do, J. S.; Chen, Y. T.; Lee, M. H. J. Power Sources 2007, 172, 623.

共引文献9

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部