期刊文献+

推荐系统中分布式混合协同过滤方法 被引量:10

A Distributed Hybrid Collaborative Filtering Method in Recommender Systems
原文传递
导出
摘要 传统协同过滤方法面临数据稀疏问题,稀疏的用户-项目关联数据将产生不准确的相似用户或项目,为了改善推荐质量,提出一种基于Map Reduce的混合协同过滤方法.该方法利用用户特征和用户-项目评分数据构造项目偏好向量,然后使用模糊K-Means算法对项目进行聚类,并从每个项目簇中选择相似项目,最后组合所有项目簇的预测结果作出推荐.实验结果显示,该方法能缓解数据稀疏问题,改善推荐精度. Addressing the information overloading problem,the collaborative filtering is an effective technique,and extensively applied in recommender systems. It make predictions by finding users with similar taste or items that have been similarly chosen. However,as the number of users or items grows rapidly,the traditional collaborative filtering approach is suffering from the data sparsity problem. The sparse useritem associations can generate inaccurate neighborhood for each user or item. A distributed hybrid collaborative filtering method was proposed based on Map Reduce,aiming at improving the recommendation quality. This method utilizes user features and ratings to construct item preference vectors. Then,it clusters items using fuzzy K-Means algorithm,and respectively chooses similar items from each clustering,finally it combines all predictions from each clustering and makes recommendation. Experiments show that the distributed hybrid collaborative filtering method can help reduce the sparsity problem,and improve the recommendation accuracy.
作者 王晓军
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第2期25-29,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61003237)
关键词 分布式框架 个性化推荐 协同过滤 模糊聚类 distributed framework personalized recommendation collaborative filtering fuzzy clustering
  • 相关文献

参考文献6

  • 1Xu Ruzhi, Wang Shuaiqiang, Zheng Xuwei, et al. Dis- tributed collaborative filtering with singular ratings for large scale recommendation [ J]. The Journal of Systems and Software, 2014, 95(9) : 231-241.
  • 2Zhang Jing, Peng Qinke, Sun Shiquan, et al. Collabora- tive filtering recommendation algorithm based on user preference derived from item domain features[ J ]. Physi- ca A: Statistical Mechanics and Its Applications, 2014,396(2) : 66-76.
  • 3Yang Xiwang, Guo Yang, Liu Yong. Bayesian-inference based recommendation in online social networks [ J ]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(4) : 642-651.
  • 4Boulkrinat S, Hadjali A, Mokhtari A. Towards recom- mender systems based on a fuzzy preference aggregation [ C ]///Proceeding of the Eighth Conference of the Europe- an Society for Fuzzy Logic and Technology ( EUSFLAT- 13). Milan: Is. n. 1, 2013: 146-153.
  • 5Son L H. HU-FCF: a hybrid user-based fuzzy collabora- tive filtering method in recommender systems[ J]. Expert Systems with Applications, 2014, 41 ( 15 ) : 6861-6870.
  • 6Feng Xie,Zhen Chen,Hongfeng Xu,Xiwei Feng,Qi Hou.TST: Threshold Based Similarity Transitivity Method in Collaborative Filtering with Cloud Computing[J].Tsinghua Science and Technology,2013,18(3):318-327. 被引量:8

二级参考文献38

  • 1E Resnick and H. R. Varian, Recommender systems, Communications of the ACM, vol. 40, no. 3, pp. 56-58, 1997.
  • 2G. Adomavicius and A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state- of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 6, pp. 734- 749, 2005.
  • 3M. Balabanovic and Y. Shoham, Fab: content-based, collaborative recommendation, Communications of the ACM, vol. 40, no. 3, pp. 66-72, 1997.
  • 4M. J. Pazzani and D. Billsus, Content-based recommendation systems, The Adaptive Web. Heidelberg: Springer Berlin, 2007, pp. 325-341.
  • 5D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, Using collaborative filtering to weave an information tapestry. Communications of the ACM, vol. 35, no. 12, pp. 61-70, 1992.
  • 6J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, Collaborative filtering recommender systems, The Adaptive Web. Heidelberg: Springer Berlin, 2007, pp. 291- 324.
  • 7X. Su and T. M. Khoshgoftaar, A survey of collaborative filtering techniques, Advances in Artificial Intelligence, vo. 2009, pp. 1-19.
  • 8C. Christakou, S. Vrettos, and A. Stafylopatis, A hybrid movie recommender system based on neural networks, International Journal on Artificial Intelligence Tools, vol. 16, no. 5, pp. 771-792, 2007.
  • 9B. Yang, T. Mei, X. S. Hua, L. Yang, S. Q. Yang, and M. Li, Online video recommendation based on multimodal fusion and relevance feedback, in Proceedings of the 6th ACM international conference on Image and video retrieval, Amsterdam, Netherlands, 2007, pp. 73-80.
  • 10M. Van Setten, M. Veenstra, A. Nijholt, and B. van Dijk, Prediction strategies in a TV recommender system- method and experiments, in Proceedings of the Second 1ADIS International Conference WWW/Internet, Algarve, Portugal, 2003, pp. 203-210.

共引文献7

同被引文献76

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部