期刊文献+

基于压缩感知的雷达信号分选方法 被引量:2

Radar Signal Sorting Method on Compressed Sensing
原文传递
导出
摘要 针对复杂电磁环境下,大量的信号在时间、空间、频谱发生随机交叠时,现有分选方法很难进行分辨的问题,提出了一种基于压缩感知理论的雷达信号分选算法.该算法将信号的样本空间作为稀疏字典,将待分选的雷达信号进行稀疏表示,以少量的观测数据就能获取信号的全部信息,从而对雷达信号进行有效的分选.仿真结果表明,该算法能对大量时频交叠信号进行快速分选,且在低信噪比下也能取得较理想的效果. The traditional radar signal sorting methods are concentrated in feature difference in time,space and frequency domains for signal separation and detection. The random overlapping signals of time,space and spectrum in the complicated electromagnetic environment make the existing methods difficult to distinguish. For these problems,a new radar signal sorting algorithm based on the compressed sensing was proposed. The radar signals for sorting can be represented sparsely in dictionary constituted by signal samples. The algorithm can obtain all the information with a small amount of observational data,the radar signals are sorted effectively. Simulation indicates that the signals can be rapidly sorted using this algorithm and the desired results are obtained in low signal noise ratio.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第2期82-87,共6页 Journal of Beijing University of Posts and Telecommunications
基金 中央高校基本科研业务专项资金资助项目(JDZD140503)
关键词 信号分选 压缩感知 样本空间 稀疏字典 稀疏表示 signal sorting compressed sensing sample space sparse dictionary sparse representation
  • 相关文献

参考文献8

  • 1Jiang Li, Li Lin, Zhao Guoqing. A novel method for LPI radar signal sorting in muhipath channel [ C ] //2012 IEEE International Symposium on Industrial Electronics (ISIE). Hangzhou: [s. n.], 2012: 1100-1104.
  • 2王世强,张登福,毕笃彦,雍霄驹.基于快速支持向量聚类和相似熵的多参雷达信号分选方法[J].电子与信息学报,2011,33(11):2735-2741. 被引量:27
  • 3国强,王常虹,郭立民,李峥,祝正威,华云.分段聚类在雷达信号分选中的应用[J].北京邮电大学学报,2008,31(2):132-136. 被引量:17
  • 4王斌,陈秋华,王翠柏.基于聚类的跳频信号分选[J].北京邮电大学学报,2009,32(2):80-84. 被引量:14
  • 5Donoho D L. Compressed sensing [ J ]. IEEE Transac- tions on Information Theory, 2006, 52(4) : 1289-1306.
  • 6Candes E J, Tao T. Near optimal signal recovery from random projections: universal encoding strategies [ J ]. IEEE Transactions on Information Theory, 2006, 52 (12) : 5406-5425.
  • 7Peyre X G. Best basis compressed sensing [ J]. IEEE Transactions on Signal Processing, 2010, 58 (5) : 2613- 2622.
  • 8Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries [ J]. IEEE Transac- tions on Information Theory, 2008, 54(5) : 2210-2219.

二级参考文献32

  • 1林春应,王贵生,金耀星.雷达信号参数容差分析[J].舰船电子对抗,1997,20(4):27-31. 被引量:5
  • 2祝正威.雷达信号的聚类分选方法[J].电子对抗,2005(6):6-10. 被引量:33
  • 3郭杰,陈军文.一种处理未知雷达信号的聚类分选方法[J].系统工程与电子技术,2006,28(6):853-856. 被引量:26
  • 4李双虎,张风海.一个新的聚类有效性分析指标[J].计算机工程与设计,2007,28(8):1772-1774. 被引量:14
  • 5牛琨,张舒博,陈俊亮.采用属性聚类的高维子空间聚类算法[J].北京邮电大学学报,2007,30(3):1-5. 被引量:13
  • 6Eric M, Dukic M L, Ohradovic M. Frequency hopping signal separation by spatio-frequeney analysis based on music method[J]. Spread Spectrum Techniques and Applications, 2000: 78-82.
  • 7Liu Xiangqian, Sidiropoulos N D, Swami A. Code blind reception of fh signals over multipath fading channels[ C]// Acoustics Speech and Signal Processing. Hong Kong, [s. n. ], 2003: 592-595.
  • 8Zhang Bin. Generalized k-harmonic means boosting in unsupervised learning[EB/OL]. (2000-10-12). http:// www. hpl. hp. com/techreports/2000/HPL-2000-137. pdf.
  • 9Wiley R G. ELINT: The Interception and Analysis of Radar Signals [M]. Second Edition, Boston, MA: Artech House, 2006: 317-356.
  • 10Wang Jun, Lei Peng, Yang Dong, et al.. A novel deinterleaving algorithm of radar pulse signal based on DSP [C]. IEEE International Symposium on Industrial Electronics (ISIE 2009), Seoul, Korea, July 5-8, 2009: 1899-1903.

共引文献53

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部