期刊文献+

一种改进的图分割算法在用户行为异常检测中的应用 被引量:6

An Improved Graph Partitioning Algorithm for User Behavior Abnormal Detection
下载PDF
导出
摘要 基于模拟随机流的马尔科夫分类算法(Markov Cluster Algorithm,MCL)是一种快速且可扩展的无监督图分割算法,在用户行为异常检测中具有广泛的应用,但时间复杂度为O(N3),不利于处理海量数据。为提高分割质量,同时减少计算时间,文章提出了一种改进的MCL模型。采用调整互信息(Adjusted Mutual Information,AMI)指标,对不同时间的图分割结果的相似度进行比较,判断是否有异常发生。实验表明,相较多层图分割算法(METIS),文章所提出的改进的MCL模型具有以下优点:1)无需事先规定聚类的数目;2)不易被数据中的拓扑噪声所影响;3)适合处理长尾分布的数据;4)在计算时间一定的情况下,能获得质量较高的分割结果 。 The MCL algorithm is short for Markov Cluster Algorithm, a fast and scalable unsupervised partitioning algorithm for graphs. MCL has been widely applied to anomaly detection. However, it requires O(N^3) time, Which is no good for a wide range of data processing. In order to improve the quality of clustering and save time consumption, an improved MCL algorithm is proposed. With AMI(Adjusted Mutual Information) index, the similarities of clusters of different periods are compared to determine whether the abnormal behavior occurs. Compared with multilevel k-way partitioning scheme(METIS) for graphs, experiments show that the proposed MCL algorithm has following strengths: 1) Number of clusters not specified ahead of time. 2) Robust against noise in graph data. 3) Suitable for clusters with long tail distribution. 4) Produce better clustering results in case of certain time consumption.
出处 《信息网络安全》 2016年第6期35-40,共6页 Netinfo Security
基金 国家高技术研究发展计划(国家863计划)[2013AA01A214]
关键词 图分割 马尔科夫分类算法 异常检测 多层图分割算法 graph partitioning Markov Cluster Algorithm abnormal detection METIS
  • 相关文献

参考文献19

  • 1CHARU C. AGGARWAL. Outlier Analysis[M].Berlin Heidelberg : Springer, 2013.
  • 2CHANDOLA V, BANERJEE A, KUMER V. Anomaly Detection for Discrete Sequences: A Survey [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 24(11):823-839.
  • 3NOBLE C C, COOK D J. Graph-based Anomaly Detection[C]//ACM, KDD '03.9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 24-27,2003. Washington,DC,USA. New York:ACM, 2003:631-636.
  • 4TONG Hanghang, LIN Chingyung . Non-Negative Residual Matrix Factorization with Application to Graph Anomaly Detection[C]//SIAM, Eleventh SIAM International Conference on Data Mining, SDM 2011, April 28-30, 2011, Mesa, Arizona, USA. Philadelphia, PA : SIAM, 2011:143-153.
  • 5LEE D D. Algorithms for Non-negative Matrix Factorization[J]. Advances in Neural Information Processing Systems, 2015, 13(6):556--562.
  • 6YAO S Z. Spectral Partitioning: The More Eigenvectors, The Better[C]// IEEE, 32nd Design Automation Conference : proceedings 1995, June 12-16, 1995, San Francisco, USA. New Jersey:IEEE, 1995, 90(3): 195 -200.
  • 7FAN R K C. Spectral Graph Theory[M] .Washington, DC : AMS, 1997.
  • 8LIN H, ZHU Q. A Spectral Clustering-Based Dataset Structure Analysis and Outlier Detection Progress[J]. Journal of Computational Information Systems, 2012, 8(1):115-124.
  • 9KARYPIS G, KUMAR V. Parallel Multilevel k-way Partitioning Scheme for Irregular Graphs [J].Siam Review, 1999, 41(2):278-300.
  • 10HENDRICKSON B, LELAND R. A Multilevel Algorithm for Partitioning Graphs[C]// Supercomputing. Proceedings of the IEEE/ACM SC95 Conference. December 3-8,1995,San Diego,California, USA. New York:Association for Computing Machinery, 1995:28.

二级参考文献13

共引文献9

同被引文献35

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部