期刊文献+

原子层沉积工艺制备催化薄膜厚度对生长碳纳米管阵列的影响 被引量:1

Influence of Catalyst Film Thickness Deposited by Atomic Layer Deposition on Growth of Aligned Carbon Nanotubes
下载PDF
导出
摘要 通过原子层沉积(ALD)工艺在硅基底依次沉积氧化铝缓冲层薄膜和氧化铁催化薄膜,然后利用管式炉进行水辅助化学气相沉积(WACVD)生长垂直碳纳米管阵列(VACNTs)。结果表明:ALD工艺制备的氧化铁薄膜经还原气氛热处理可形成碳纳米管阵列生长所需的纳米催化颗粒;氧化铁薄膜厚度与纳米催化颗粒大小以及生长出的碳纳米管阵列的结构密切相关。当氧化铁薄膜厚度为1.2 nm时,生长出的碳纳米管阵列管外径约为10 nm,管壁层数约为5层,阵列高度约为400?m。增大氧化铁薄膜的厚度,生长出的碳纳米管阵列外径和管壁数增加,阵列高度降低。实验还在硅基底侧面观察到了VACNTs,表明ALD工艺可在三维结构上制备催化薄膜用于生长VACNTs。 A1203 buffer layer and Fe203 catalyst film were deposited on Si wafer successively by atomic layer deposition (ALD). The coated Si wafer was used to grow vertically aligned carbon nanotubes (VACNTs) by wa- ter-assisted chemical vapor deposition (WACVD). Results show that catalytically active nanoparticles form in the ALD deposited Fe203 film after heat-treatment in reduced atmosphere, and the thickness of Fe203 film is closely related to the size of catalytic nanoparticles and the structure of VACNTs grown. For 1.2 nm-thick Fe203 film as catalyst layer, the VACNTs have an outer diameter of ~10 nm, wall numbers of ~ 5 and height of- 400 μm. In- creasing the thickness of Fe203 film leads to outer diameter and wall number of VACNTs increasing, but the height of which decreasing. It is also observed that VACNTs grows on the side face of Si wafer, which indicates that ALD technique can be useful for VACNTs growth on three-dimensional substrate.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2016年第7期681-686,共6页 Journal of Inorganic Materials
关键词 原子层沉积 氧化铁 水辅助化学气相沉积 垂直碳纳米管阵列 结构可控 三维样品 atomic layer deposition iron oxide water-assisted chemical vapor deposition vertically aligned carbon nanotubes controlled structure three-dimensional sample
  • 相关文献

参考文献1

二级参考文献52

  • 1项兢,陆尧,翁桅,余海峰.碳纳米管增强纳米晶Ag-5%C电接触材料研究[J].上海有色金属,2007,28(3):109-112. 被引量:3
  • 2Izadi-Najafabadi A, Yasuda S, Kobashi K, et al. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density[J].Advanced Materials, 2010, 22 (35): E235-E241.
  • 3Kimura H, Zhao B, Futaba D N, et al. Field emission from laterally aligned carbon nanotube flower arrays for low turn-on field emission[J].APLMaterials, 2013, 1 (3): 032101-5.
  • 4Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature Nanotechnology, 2011, 6 (5): 296-301.
  • 5Zhang L, Zhao B, Wang X, et al. Gas transport in vertically-aligned carbon nanotube/parylene composite membranes[J]. Carbon, 2014, 66: 11-17.
  • 6Mizuno K, Ishii J, Kishida H, et al. A black body absorber from vertically aligned single-walled carbon nanotubes[J]. Proceedings of the National Academy of Sciences, 2009, 106 (15): 6044-6047.
  • 7Xu M, Futaba D N, Yamada T, et al. Carbon nanotubes with temperature-invariant viscoelasticity from -196 to 1000 ℃ [J]. Science, 2010, 330 (6009): 1364-1368.
  • 8Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes[J]. Science, 1996, 274 (5293): 1701-1703.
  • 9Fan S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Science, 1999, 283 (5401): 512-514.
  • 10Murakami Y, Chiashi S, Miyauchi Y, et al. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy[J]. Chemical Physics Letters, 2004, 385 (3): 298-303.

共引文献1

同被引文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部