期刊文献+

针对滚动轴承故障诊断的新时频特征提取方法 被引量:4

A New Time-frequency Domain Feature Extraction Method for Rolling Bearing Fault Diagnosis
原文传递
导出
摘要 针对滚动轴承的故障诊断,提出了一种基于词包模型和短时傅里叶变换的特征提取方法。根据轴承故障的产生机理,不同轴承的振动信号在频域上会有相应的能量分布规律,然而在实际现场中,信号干扰或者生产环境等因素会弱化这种规律性,使得在频谱上难以准确看到相应分布特征。当采用词包模型时,把每一时间帧下能量在频率维度上的分布看成一个单词,则每段信号就表示成了由各个单词组成的一篇篇文档,这就可以直接从数据的角度去揭示能量分布的这种规律性。然后,以词包模型处理后的结果作为特征向量,用SVM分类算法诊断出结果。最后用无锡某汽车生产线SQI-MFS实验平台和美国凯斯西储大学的轴承振动数据进行了实验,实验验证了该方法比时域特征(RMS)和时频域特征(WE&WEE)的诊断结果精确,可以在滚动轴承故障诊断领域展开应用。 For fault diagnosis of rolling bearings,a new feature extraction strategy based on short time Fourier transform( STFT) and bag of wordss( BOW) is proposed. Based on the generate mechanism of bearing fault,the different bearing vibration signals have relevant energy distribution. But in the factory,some factors like signal interference or environment noise will destroy the energy distribution. When using BOW,it regards the distribution of energy in frequency domain each time frame as a word,so segments of signal will be documents which are made up of many words. It shows the energy distribution directly in data perspective. Then,with the new features and SVM classifier,the results of fault diagnosis can be known. At last,effectiveness of the proposed method is verified,vibration from SQI- MFS platform and CWRU platform are analyzed. The results in experiments shows that this method is better than RMS and WEWEE. So the new feature can be used in fault diagnosis area.
出处 《机械传动》 CSCD 北大核心 2016年第7期126-131,共6页 Journal of Mechanical Transmission
基金 国家自然科学基金(61104121 61202211) 江南大学自主科研计划重点项目(JUSRP51407B)
关键词 故障诊断 时频特征 短时傅里叶变换 词包模型 SVM Fault diagnosis Time-frequency domain feature STFT BOW SVM
  • 相关文献

参考文献12

  • 1钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,2007.119-131.
  • 2BIN G F,GAO J J,LI X J,et al.Early fault diagnosis of rotating machinery based on wavelet packets—Empirical mode decomposition feature extraction and neural network[J].Mechanical Systems and Signal Processing,2012,27:696-711.
  • 3高慧.基于卷积型小波包能量矩的机械故障特征提取[J].煤矿机械,2008,29(11):198-200. 被引量:3
  • 4HU Q,HE Z I,ZHANG Z S,et al.Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble[J].Mechanical Systems and Signal Processing,2007,21(2):688-705.
  • 5SATISH L.Short-time Fourier and wavelet transforms for fault detection in power transformers during impulse tests[J].IEEE Proceedings-Science,Measurement and Technology,1998,145(2):77-84.
  • 6ROSERO J,CUSIDO J,ESPINOSA A G,et al.Broken bearings fault detection for a permanent magnet synchronous motor under non-constant working conditions by means of a joint time frequency analysis:IEEE International Symposium on Industrial Electronics.New York:IEEE,c2007:3415-3419.
  • 7WANG H Q,CHEN P.Fuzzy diagnosis method for rotating machinery in variable rotating speed[J].IEEE Sensors Journal,2011,11(1):23-34.
  • 8ALLEN J B.Short term spectral analysis,synthesis,and modification by discrete Fourier transform[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1977,25(3):235-238.
  • 9CHOWDHURY G.Introduction to modern information retrieval[M].[S.l.]:Facet Publishing,2010:153-160.
  • 10VAPNIK V.The nature of statistical learning theory[M].[S.l.]:Springer Science&Business Media,2013:78-80.

二级参考文献7

共引文献63

同被引文献29

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部