期刊文献+

硫碘循环制氢中Bunsen副反应的热力学模拟研究

THERMODYNAMIC SIMULATION OF BUNSEN SIDE REACTION IN SULFUR-IODINE THERMOCHEMICAL CYCLE FOR HYDROGEN
下载PDF
导出
摘要 利用热力学模拟计算软件FactSage来模拟溶液组分构成、温度和压力对Bunsen副反应的影响。模拟结果表明:增加碘量、水量和提高压力均能同时抑制H_2SO_4相溶液和HI_x相溶液中副反应的发生。对于H_2SO_4相溶液,增大HI量会促进副反应的发生,H_2SO_4相溶液主要发生的副反应为S和SO_2形成副反应。对于HI_x相溶液,增大H_2SO_4量会促进副反应的发生,HI_x相溶液中3种副反应均发生,但SO_2和S形成副反应相比H_2S形成副反应占据主导地位。常压下,T≤360 K时,控制反应物比例能保证副反应基本不发生。 Based on the minimization of Gibbs free energy adopted by FactSage thermodynamic calculation software, the effect of solution components, temperature and pressure on Bunsen side reaction was simulated. The results show that increasing the concentration of iodine, water quantity and pressure in the solution can inhibit the side reactions in H2SO4 phase solution and HIx phase solution. Increasing HI content in H2SO4 phase solution will encourage side reaction definitely. The side reactions happened in H2SO4 phase solution are dominantly sulfur and sulfur dioxide formation side reactions. In HI, phase solution, increasing H2SO4 content will considerably enhance side reactions, sulfur and sulfur dioxide formation side reactions are comparatively stronger than that of H2S formation side reaction. Never side reactions appear, if the reaction is kept under T≤360 K in atmospheric pressure and the reactant ratios are controlled attentively.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2016年第6期1499-1503,共5页 Acta Energiae Solaris Sinica
基金 国家高技术研究发展(863)计划(2008AA05Z103)
关键词 硫碘循环 Bunsen反应 Bunsen副反应 热力学模拟 sulfur-iodine cycle Bunsen reaction Bunsen side reaction thermodynamic simulation FactSage
  • 相关文献

参考文献8

  • 1Brown L C, Funk J F, Showalter S K. Initial screeningof thermochemical water- splitting cycles for highefficiency generation of hydrogen fuels using nuclearpower[R]. GA-A23373, 2000.
  • 2Brown L C, Besenbruch G E,Schultz K R. Highefficiency generation of hydrogen fuels usingthermochemical cycles and nuclear power [R]. GA-A24326, 2002.
  • 3Brown L C, Besenbruch G E, LentscK R D. Alternativeflowsheets for the suifur-iodine thermochemicalhydrogen cycle [ M ]. United States : Department ofEnergy, Oakland Operations Office, 2003, 1-2.
  • 4Norman J H, Basenbruch G E,O’ keefe D R.Thermochemical water-splitting for hydrogen production.Final report 1 Jan 75-31 Dec 80. [Sulfur-iodine cycle][R]. General Atomic Co., San Diego, CA(USA), 1981.
  • 5Knoche K F. Second law and cost analysis of the oxygengeneration step of the general atomic suifur-iodine cycle[A],Proc 5th World Hydrogen Energy Conf [C],Toronto, Canada, 1984.
  • 6Huang C,Ali T. Analysis of suifur-iodinethermochemical cycle for solar hydrogen production.Part I: decomposition of sulfuric acid[j]. Solar Energy,2005,78(5): 632-646.
  • 7Kubo S, Nakajima H, Kasahara S, et al. Ademonstration study on a closed-cycle hydrogenproduction by the thermochemical water-splitting iodine-sulfur process [J]. Nuclear Engineering and Design,2004, 233(1): 347-354.
  • 8Sakurai M, Nakajima H, Amir R, et al. Experimentalstudy on sideeaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process [J].International Journal of Hydrogen Energy, 2000, 25(7): 613-619.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部