期刊文献+

P(r)P振子的自由振动频率规律性研究

Regularity research on free vibration frequency of P(r)P oscillators
下载PDF
导出
摘要 将恢复力为ε·sign(x)·|x|^r的振子命名为具有单纯r次幂型恢复力的振子,记为P(r)P振子,给出了其自由振动频率的精确计算公式。提出了频率幂次常数和当量刚度等概念,将P(r)P振子自由振动频率归纳为频率幂次常数与当量刚度平方根的乘积。提出了P(r)P振子的分类方法:把幂次r在0和1之间的称为渐柔型P(r)P振子,振幅愈大,其自由振动频率愈小;幂次r大于1的称为渐刚型P(r)P振子,其自由振动频率随振幅的增大而增大。 Oscillators with restoring forceε·sign(x)·|x|^r are named oscillators with pure r-th power type restoring force,abbreviated as P(r)Poscillators,and an exact free vibration frequency formula of this group of oscillators is presented.The concepts of frequency-power constant and equivalent stiffness are proposed,and the free vibration frequency of P(r)P oscillators is explained as a product of frequency-power constant and square root of equivalent stiffness consequently.The free vibration frequencies of P(r)P oscillators are related with the amplitude except linear oscillator.The exponent ris the key parameter of P(r)Poscillators,which influences the free vibration frequencies remarkably and determines frequency-power constants particularly.Frequency-power constant monotone decreases as exponent rincreases.P(r)Poscillators can be divided into two groups.The softening P(r)P oscillators have exponent r in the range of 0to 1,whose free vibration frequencies decrease with an increase in amplitude while the hardening P(r)P oscillators have exponent r bigger than 1,whose free vibration frequencies increase with an increase in amplitude.
出处 《海军工程大学学报》 CAS 北大核心 2016年第3期1-4,共4页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目(51179197) 上海交通大学海洋工程国家重点实验室基金资助项目(1009)
关键词 非线性振动 P(r)P振子 自由振动频率 频率幂次常数 当量刚度 nonlinear vibration P(r)P oscillator free vibration frequency frequency-power constant equivalent stiffness
  • 相关文献

参考文献1

二级参考文献14

  • 1LIAO S J, TAN Y. A general approach to obtain series solutions of nonlinear differential equations [J]. Studies in Applied Mathematics, 2007, 119(4) : 297 - 254.
  • 2HE J H. Some asymptotic methods for strongly nonlinear equations [J]. International Journal of Modern Physics B, 2006, 20(10) : 1141 - 1199.
  • 3HE J H, Wu X H. Variational iteration method: New development and applications [J]. Computer and Mathematics with Applications, 2007, 54(7) : 881 - 894.
  • 4HE J H. Hamiltonian approach to nonlinear oscillators [J]. Physics Letters A, 2010, 374(23) : 2312 - 2314.
  • 5LAI S K, LIM C W. Higher-order approximate solutions to a strongly nonlinear Dulling oscillator [J]. International Journal for Compu- tational Methods in Engineering Science and Mechanics, 2006, 7(3): 201- 208.
  • 6LAI S K, LIM C W, WU B S, et al. Newton-harmonic balancing approach for accurate solutions to nonlinear cubic-quintic Duffing oscil- lators [J]. Applied Mathematical Modelling, 2009, 33(2) : 852 - 866.
  • 7LAI S K, LIM C W, Lin Zhang, et al. Analytical analysis for large-amplitude oscillation of a rotational pendulum system [J]. Applied Mathematics and Computation, 2011, 217(13): 6115-6124.
  • 8KHAN Y, WU Q B. Homotopy perturbation transform method for nonlinear equations using He's polynomials [J]. Computers and Math- ematics with Applications, 2011, 61(8): 1963 - 1967.
  • 9MARINCA V, HERISANU N. A modified iteration perturbation method for some nonlinear oscillation problems [J]. Acta Mechanic, 2006, 184(1): 231 - 242.
  • 10MARINCA V, HERISANU N. Comments on "A one-step optimal homotopy analysis method for nonlinear differential equations"[J]. Commun Nonlinear Sci Numer Simulat, 2010, 15(11): 3735- 3739.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部