期刊文献+

取向硅钢难磁化方向与磁导率关系的研究 被引量:2

Hard Magnetization Direction and Its Relation with Permeability of Conventional Grain-oriented Electrical Steel
原文传递
导出
摘要 取向电工钢板沿不同方向的磁性能不同,将取向电工钢板沿与轧向成不同角度剪切成标准的Epstein试样并测试其相应的磁学性能。实验结果表明,材料的难磁化方向与轧向成60°角。针对传统的椭圆模型在描述磁导率随磁场强度变化的过程中不准确的问题,提出了抛物线模型和综合模型用来描述磁导率与磁化角度的关系。当磁场强度大于10 000 A/m时,宜采用综合模型;当磁场强度小于10 000 A/m时,宜采用抛物线模型。两阶段关系模型可以准确描述磁导率随磁场强度的变化规律,对于提高与电工钢相关的电磁计算有重要的意义,对电工钢在工业上的更广泛应用意义重大。 Magnetic properties of conventional grain-oriented electrical steel sheets are different in various directions. In the present paper, Epstein standard samples were cut with different angles to rolling direction, and the corresponding magnetic properties of samples were tested. Results show that the hard magnetization direction to the rolling direction is around 60°. Conventional elliptical models are not accurate to simulate permeability at all magnetic intensities, and parabolic and hybrid models with high accuracy are proposed to simulate relations between permeability and magnetization direction. When magnetic intensity is no less than 10 000 A/m, hybrid model can be used, and when magnetic intensity is less than 10 000 A/m, parabolic model should be applied. Two-stage relation model of permeability and magnetization angles is of significance in improving the accuracy of electromagnetic engineering calculations of electrical steel and can be applied in industrial applications.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第6期1369-1373,共5页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(51174057,51274062) the National High Technology Research and Development Program(2012AA03A503)
关键词 难磁化方向 取向电工钢 磁导率模型 抛物线及综合模型 磁场强度 hard magnetization direction conventional grain-oriented electrical steel permeability model parabolic and hybrid models magnetic intensity
  • 相关文献

参考文献21

  • 1Kumano T, Ushigami Y. ISIJ International[J], 2007, 47:890.
  • 2Wang H, Li C S, Zhu T et al. Journal of Materials Science and Technology[J], 2013, 29:673.
  • 3Barros J, Schneider J, Verbeken K et al. Journal of Magnetism and Magnetic Materials[J], 2008, 320:2490.
  • 4Zhu Z H, Yin L, Hu Q et al. Rare Metal Materials and Engineering[J], 2014, 43(4): 1037 (in Chinese).
  • 5Fujisaki K, Tamaki T. IEEE Transactions on Magnetics [J], 2009, 45:687.
  • 6Cheng Z, Takahashi N, Forghani B et al. IEEE Transactions on Magnetics[J], 2014, 50:630.
  • 7Moradi H, Afjei E. Electrical Engineering[J], 2014, 96:15.
  • 8Pongsakorn J, Jureepom N, Chitnarong S. Rare Metal Materials andEngineering[J], 2013, 42(1): 19 (in Chinese).
  • 9Bertand C, Ssmuel L, Francois B Jet al. Surface and Coatings Technology[J], 2014, 47:1.
  • 10Seiji I, Takashi T, Masato E et al. International Journal of Applied Electromagnetics and Mechanics[ J], 2010, 33:415.

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部