期刊文献+

机械合金化制备纳米ZrB_2-TiB_2复合粉末(英文) 被引量:1

ZrB_2-TiB_2 Nanocomposite Powder Prepared by Mechanical Alloying
原文传递
导出
摘要 采用Zr、Ti、B为原料(摩尔比:1:1:4),在氩气气氛保护下,采用机械合金化方式,在球料比10:1、球磨转速500 r/min实验条件下制备了纳米结构的ZrB_2-TiB_2。采用X射线衍射仪(XRD)、场发射扫描电镜(FESEM),透射电镜(TEM)仪器,对不同球磨时间粉末的相组成、微观结构进行了表征。结果发现,原始粉末经120 h球磨后,粉末主要由ZrB_2和TiB_2组成,平均尺寸在20 nm左右,TiB_2分布于ZrB_2基体上。文章还探讨了该体系获得目标产物的机械合金化机制。 Diborides, including zirconium diboride(ZrB_2) and titanium diboride(TiB_2), have a number of desirable ceramic qualities that make suitable for preparing ceramic-matrix composites. However, synthesizing a composite based on these materials usually requires high temperatures and complex synthetic methods. In the present study, a nanocrystalline ZrB_2-Ti B_2 powder was synthesized via mechanical alloying(MA) of the mixture of elemental Zr, Ti, and B powders mixed at a Zr/Ti/B mole ratio of 1:1:4, a 10:1 ball-to-powder weight ratio and 500 r/min rotational speed in a planetary ball-mill under argon atmosphere using a ZrO_2 vial and balls. The effect of milling time on the phase change was investigated by X-ray diffraction(XRD), and the microstructure evolution of the powder mixture was monitored by field emission scanning electron microscopy(FESEM) and transmission electron microscopy(TEM). It is found that after 120 h of milling, a nanoscale composite powder with -20 nm mean particle size can be obtained. Moreover, TEM examination clearly shows the composite powder is composed of the nanoscale TiB_2 and ZrB_2 particles. Finally, the milling mechanism was discussed.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第6期1381-1385,共5页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(51375150,51205114) Academic Leaders Project of the Wuhan Science and Technology Bureau(201271130448) the Hubei Provincial Natural Science Foundation of China(2013CFB018)
关键词 二硼化锆-二硼化钛 纳米复合材料 机械合金化 ZrB2-TiB2 nanocomposite mechanical alloying
  • 相关文献

参考文献27

  • 1Guo C, Chen J M, Yao R G et al. Rare Metal Materials and Engineering[J], 2013, 42 (8): 1547 (in Chinese).
  • 2Qi G H, Fang C F, Bai Yet al. Rare Metal Materials and Engineering[J], 2011, 40(8): 1339 (in Chinese).
  • 3Zhang J, Zhang D Q, Wu P Wet al. Rare Metal Materials and Engineering[J], 2014, 43(1): 47 (in Chinese).
  • 4Jiao L, Zhao Y T, Wu Y et al. Rare Metal Materials and Engineering[J], 2014, 43(1): 6 (in Chinese).
  • 5Nasiri-Tabrizi B, Adhami T, Ebrahimi-Kahrizsangi R. Ceramics International[J], 2014, 409(5): 7345.
  • 6Jalaly M, Bafghi M S, Tamizifar M et al. Journal of Alloys and Compounds[J], 2014, 588:36.
  • 7Xu L, Huang C, Liu H, Zou Bet aL International Journal of Refractory Metals and Hard Materials[J], 2013, 37:98.
  • 8Wu W W, Zhang G J, Sakka Y. Journal of Asian Ceramic Societies[J], 2013, 1(3): 304.
  • 9Qiu H Y, Guo W M, Zou Jet al. Powder Technology[J], 2012, 217:462.
  • 10Agaogullan D, Gokce H, Duman I et al. Journal of the European Ceramic Society[J], 2012, 32(7): 1447.

同被引文献18

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部