期刊文献+

城市配水管网区域改造聚类技术研究

Clustering-based Regional Transformation Technology for City Water Supply Network
原文传递
导出
摘要 阐述了模糊C均值(FCM)算法和马尔科夫随机场(MRF)的相关理论知识和基本框架。首先建立了基于模糊C均值的给水管网区域改造算法,它可直接应用MPR-Pipe算法得到的管网管段"重要性"值完成对管网的区域聚类;接着,建立了基于马尔科夫随机场和FCM算法的MRF-FCM区域改造算法,它同时考虑管网的拓扑信息和属性信息对管网区域聚类。根据工程实例进行算法实践,结果表明,两种算法可以得到符合实际工程应用的区域聚类,确定优先改造区域,为管网改造问题提供了切实可行的解决方案。 The relevant theoretical knowledge and basic framework of the fuzzy C-means algorithm (FCM algorithm) and Markov random field (MRF) were described. First, the regional transformation al- gorithm of water supply network based on fuzzy C-means was established, which could directly apply "im- portance" values from the MPR-Pipe algorithm to complete the regional clustering of pipe network. Then, the MRF-FCM regional transformation algorithm based on the Markov random field and FCM algorithm was established, which simultaneously considered the topological and attribute information of pipe network in regional clustering. The algorithms were tested according to the practical project, and the results showed that the two algorithms could figure out the regional clustering fit to actual project, and determine the priority for the transformation region to provide a practical solution for transformation issues of pipe network.
出处 《中国给水排水》 CAS CSCD 北大核心 2016年第13期67-70,共4页 China Water & Wastewater
基金 国家自然科学基金资助项目(51178141) 国家水体污染控制与治理科技重大专项(2012ZX07408-002-004-002)
关键词 管网改造 区域改造 马尔科夫随机场 模糊C均值算法 pipe network transformation regional transformation Markov random field(MRF) fuzzy C-means algorithm (FCM algorithm)
  • 相关文献

参考文献5

二级参考文献49

  • 1张爱华,谭劲.边缘信息指导下的半模糊聚类图像分割方法[J].华中科技大学学报(自然科学版),2005,33(6):8-11. 被引量:5
  • 2田金文,耿远明,程辉,于秋则.基于图像分割的SAR图像匹配方法[J].华中科技大学学报(自然科学版),2006,34(10):31-33. 被引量:6
  • 3Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters[J]. J Cybern, 1974, 3: 32-57.
  • 4Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.
  • 5Rezaee M R, Zwet P, Lelieveldt B, et al. A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering[J]. IEEE Trans on Image Processing, 2000, 9(7): 1 238- 1 248.
  • 6Wang X, Wang Y, Wang L. Improving fuzzy Cmeans clustering based on feature-weight learning [J]. Pattern Recognit Lett, 2004, 25:1 123-1 132.
  • 7Zhang D Q, Chen S C, Pan Z S. Kernel-based fuzzy clustering incorporating spatial constrains for image segmentation[J].Proc International Conference on Machine Learning and Cybernectics, 2003(4) : 2 189- 2 192.
  • 8Pham D. L Fuzzy clustering with spatial constrains [C]//International Conference on Image Processing. New York: IEEE, 2002:65-68.
  • 9Bezdek J C. Cluster validity with fuzzy sets [J]. J Cybern, 1974, 3: 58-73.
  • 10Bezdek J C. Mathematical models for systematic and taxonomy[C]// Proceedings of Eight International Conference on Numerical Taxonomy. San Francisco: IEEE, 1975:143-166.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部