期刊文献+

基于运行轨迹特征分析的车辆自组织网路由算法 被引量:6

Routing algorithm based on characteristics analysis of vehicle trace in vehicular ad hoc network
下载PDF
导出
摘要 首先基于车辆trace数据提取了粗粒度的车辆移动信息,在此基础上,继续研究了trace数据的细粒度的车辆移动模型;然后基于移动模型提出了车辆自组织网络的路由算法(RPT-D),根据车辆移动特征将报文更快地传输到目的地;接着将对传输的Qo S需求放入报文选路目标中,得到扩展性和选路结果更好的RPT-GA算法;最后通过仿真实验,分别从传输时延、投递成功率、跳数和辅助报文数量等4个性能参数角度,基于车辆trace数据将所提出的路由算法与经典的车辆自组织网路由算法(IGRP和GPSR)进行比较,实验结果验证了所提算法的有效性。 The coarse granularity vehicle mobility information is extracted from the vehicle trace data. Then a fine granularity mobility model was presented based on the coarse-grained mobility information. Based on the mobility model, a VANET routing algorithm, RPT-D, was proposed to quickly deliver the packets to the destination according to the mobility attributes. The RPT-GA algorithm, which was integrated with the Qo S demands in the path selection objective, was designed. Finally, through the extensive simulations, the proposed algorithms are compared with other typical VANET routing algorithms, IGRP and GPSR, in terms of the transmission latency, the delivery ratio, the hop count and the extra package number. The simulation results verify the performance of the proposed algorithms.
出处 《通信学报》 EI CSCD 北大核心 2016年第6期144-153,共10页 Journal on Communications
基金 国家自然科学基金资助项目(No.61272532 No.61370206 No.61370209) 教育部中国移动联合基金资助项目(No.MCM20150502) 江苏省自然科学基金资助项目(No.BK20151416)~~
关键词 车辆自组网 车辆trace 路由算法 传输时延 投递成功率 vehicular ad hoc network vehicle trace routing algorithm transmission latency delivery ratio
  • 相关文献

参考文献1

二级参考文献25

  • 1Zhang D,Guo B,Yu Z. The emergence of social and community intelligence[J].Computer,2011,(07):21-28.
  • 2Ratti C,Pulselli R M,Willians S,Frenchman D. Mobile Landscapes:using location data from cell phonnes for urban analysis[J].Envrionment and Planning B:Planning and Design,2006,(05):727-748.
  • 3Zhu H,Zhu Y,Li M,Ni L. SEER:metropolitan-scale traffic perception based on lossy sensory data[A].2009.217-225.
  • 4Calabrese F,Pereira F C,Lorenzo G D,Liu L,Ratti C. The geography of taste:analyzing cell-phone mobility and social[A].2010.22-37.
  • 5Girardin F,Blat J,Calabrese F,Fiote F,Ratti C. Digital Footprinting:uncovering tourists with user-generated content[J].IEEE Pervasive Computing,2008,(04):36-43.
  • 6Ahas R,Aasa A,Silm S,Tiru M. Mobile positioning data in tourism studies and monitoring:case study in Tartu,Estonia[A].2007.119-128.
  • 7Girardin F,Vaccari A,Gerber A,Biderman A Ratti C. Quantifying urban auractiveness from the distribution and density of digital footprints[J].International Journal of Spatial Data Infrastructures Research,2009.175-200.
  • 8González M,Hidalgo C,Barabasi A. Understanding individual human mobility patterns[J].Nature,2008.779-782.
  • 9McNamara L,Mascolo C,Capra L. Media sharing based on collocation prediction in urban transport[A].2008.58-69.
  • 10Froehlich J,Neumann J,Oliver N. Sensing and predicting the pulse of the city through shared bicycling[A].2009.1420-1426.

共引文献47

同被引文献22

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部