期刊文献+

基于受限非负张量分解的用户社会影响力分析 被引量:2

User social influence analysis based on constrained nonnegative tensor factorization
下载PDF
导出
摘要 针对传统社会影响力分析方法未能充分考虑观点和话题信息等问题,提出了一种基于受限非负张量分解的用户社会影响力分析方法。首先把社交媒介用户相互评论关系自然地表示成三阶张量,然后通过拉普拉斯话题约束矩阵控制张量分解过程,最后根据分解得到的潜在因子度量用户观点社会影响力。该方法的优点是能有效地从受限张量分解结果中检索出给定话题下用户的社会影响力,同时保持其社会影响力的极性分布。实验结果表明,该方法的性能优于OOLAM和Twitter Rank等基准算法。 Existing models for measuring user social influence fail to integrate both opinion and topic information. Therefore, a new constrained nonnegative tensor factorization method combining user's opinion and the topical relevance was proposed. The method represented user's comment relations as 3-order tensor, factorized the comments tensor constrained by Laplacian topical matrix, and then measures user influence according to the latent factors resulting from the tensor factorization. Thus, the new method not only was capable to effectively calculate the strength of user social influence on given topic, but also kept the polarity allocation of social influence. The experimental result shows that the performance of the proposed method is better than that of the baseline methods such as OOLAM, Twitter Rank, etc.
出处 《通信学报》 EI CSCD 北大核心 2016年第6期154-162,共9页 Journal on Communications
基金 国家自然科学基金资助项目(No.61300105) 教育部博士点联合基金资助项目(No.2012351410010) 福建省科技重大专项基金资助项目(No.2013H6012) 福州市科技计划基金资助项目(No.2012-G-113 No.2013-PT-45)~~
关键词 社会影响力 话题 观点 张量分析 social influence topic opinion tensor analysis
  • 相关文献

参考文献17

  • 1CUI P, WANG F, YANG S, et al. Item-level social influence prediction with probabilistic hybrid factor matrix factorization[C]//AAAI, c2011: 331-336.
  • 2CUI P, WANG F, LIU S, et al. Who should share what?: item-level social influence prediction for users and posts ranking[C]//The 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, c2011:185-194.
  • 3RASHID A M, KARYPIS G, RIEDL J. Influence in ratings-based recommender systems: an algorithm- independent approach[C]//The SIAM International Conference on Data Mining. e2005:556-560.
  • 4BAKSHY E, HOFMAN J M, MASON W A, et al. Everyone's an influ- encer: quantifying influence on Twitter[C]//The fourth ACM Interna- tional Conference on Web Search and Data Mining. ACM, c2011: 65-74.
  • 5YANG J, LESKOVEC J. Modeling information diffusion in implicit networks[C]//2010 IEEE 10th International Conference on Data Min- ing (ICDM). IEEE, c2010: 599-608.
  • 6SAKAKI T, OKAZAKI M, MATSUO Y. Earthquake shakes Twitter users: real-time event detection by social sensors[C]//The 19th Inter- national Conference on World Wide Web. ACM, c2010: 851-860.
  • 7BAKSHY E, ECKLES D, YAN R, et al. Social influence in social advertising: evidence from field experiments[C]//The 13th ACM Con- ference on Electronic Commerce. ACM, c2012: 146-161.
  • 8毛佳昕,刘奕群,张敏,马少平.基于用户行为的微博用户社会影响力分析[J].计算机学报,2014,37(4):791-800. 被引量:78
  • 9吴信东,李毅,李磊.在线社交网络影响力分析[J].计算机学报,2014,37(4):735-752. 被引量:120
  • 10WENG J, LIME P, J1ANG J, et al. Twitterrank: finding topic-sensitive influential twitterers[C]//The Third ACM International Conference on Web Search and Data Mining. ACM, c2010:261-270.

二级参考文献15

  • 1Lazarsfeld P F, Berelson B, Gaudet H. The People's Choice: How the Voter Makes up His Mind in a Presidential Campaign. New York Columbia University Press, 1944.
  • 2Granovetter M. The strength of weak ties. American Journal of Sociology, 1973, 78 1360 1380.
  • 3Krackhardt D. The strength of strong ties: The importance of philos in organizations//Nohria N, Eccles R G eds. Networks and Organizations: Structure, Form, and Action. Boston: Harvard Business School Press, 1992:216-239.
  • 4Burt R S. The social structure of competition//Nohria N, Eccles R G eds. Networks and Organizations.. Structure, Form, and Action. Boston Harvard Business School Press, 1992.- 57-91.
  • 5Weng Jian-Shu, Lim Ee-Peng, Jiang Jing, He Qi, Twitterrank .. Finding topic-sensitive influential twitterers//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York, USA, 2010:261-270.
  • 6Pal A, Counts S. Identifying topical authorities in microblogs //Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong, China, 2011: 45-54.
  • 7CNNIC. The 30th statistical report on Internet development in China, 2013(in Chinese).
  • 8Kwak H, Lee C, Park H, Moon S. What is Twitter, asocial network or a news media?//Proceedings of the 19th International Conference on World Wide Web. Raleig, USA, 2010:591-600.
  • 9Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003= 137-146.
  • 10Goyal A, Bonchi F, Lakshmanan L V S. Learning influence probabilities in social networks//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York, USA, 2010:241 250.

共引文献187

同被引文献7

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部