期刊文献+

基于曲度特征的三维模型检索算法 被引量:6

3D model retrieval algorithm based on curvedness feature
下载PDF
导出
摘要 针对如何提高复杂曲面的三维模型的检索精度的问题,提出了一种基于曲度特征的三维模型检索算法。首先,在模型表面选取随机采样点,计算点所在局部曲面的高斯曲率和平均曲率,通过高斯曲率和平均曲率求出随机点的曲度值,曲度值表明了曲面的凹凸属性。然后,以模型的质心为球心,以随机点与质心距离和曲度值为坐标轴建立坐标系,统计出一定距离范围内曲度值分布的概率,构建距离与曲度的分布矩阵,以此分布矩阵作为三维模型特征描述符。该特征描述符具有旋转不变性和平移不变性,能够很好地反映复杂曲面的几何特征。最后,通过比较分布矩阵给出不同模型间的相似度。实验结果表明,该方法相比形状分布算法的检索性能有较大提高,尤其适用于具有复杂曲面的三维模型检索。 To improve the retrieval precision of 3D model with the complex surface, a new method based on curvedness feature was proposed. First, the sample points were obtained on the 3D model surface. The curvedness of these points was obtained by computing Gauss curvature and Mean curvature. The curvedness values showed properties of 3D model surface.Secondly, the centroid of the model was set as the center. The coordinate system in which two coordinate axes were the curvedness value and the Euclid distance between the random point and the center was constructed. The distribution matrix of curvedness feature was obtained by computing the statistical number of the sample points in the different Euclid distance. This distribution matrix was the feature descriptor of the 3D model. This descriptor had the property of rotation invariance and translation invariance, which could well reflect the geometric characteristics of complex surfaces. Finally, the similarity between different models was given by comparing the curvedness distribution matrix. The experimental results show that the proposed method can effectively improve the accuracy of the 3D model retrieval, especially suitable for those models with complex surfaces.
出处 《计算机应用》 CSCD 北大核心 2016年第7期1914-1917,1922,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61373117) 陕西省教育厅基金资助项目(12JK0730)~~
关键词 特征提取 曲度 高斯曲率 平均曲率 三维模型检索 feature extraction curvedness Gaussian curvature mean curvature 3D model retrieval
  • 相关文献

参考文献18

二级参考文献106

  • 1郑伯川,彭维,张引,叶修梓,张三元.3D模型检索技术综述[J].计算机辅助设计与图形学学报,2004,16(7):873-881. 被引量:66
  • 2肖春霞,冯结青,缪永伟,郑文庭,彭群生.基于Level Set方法的点采样曲面测地线计算及区域分解[J].计算机学报,2005,28(2):250-258. 被引量:16
  • 3Ankerst M, Kastenmuller G, Kriegel H P, et al. 3D shape histograms for sim ilarity search and classification in spatial databases[C]//Proceedings of the 6th International Symposium on Advances in Spatial Databases, Hong Kong, 1999:207-228
  • 4Novotni M, Klein R. 3D zernike descriptors for content based shape retrieval[C]//Proceedings of ACM Symposium on Solid Modeling and Applications, Seattle, Washington, USA, 2003: 216-225.
  • 5Osada R, Funkhouser T, Chazelle B, et al. Matching 3D models with shape distributions[C]//Proceedings of International Conference on Shape Modeling and Applications, Genova, Italy, 2001: 154-167.
  • 6Vranie D, Saupe D. 3D model retrieval[C]// Proceedings of Spring Conference on Computer Graphics, Budmerice, Slovakia, 2000: 89-93.
  • 7Sun Changming, Sherrah Jamie. 3D symmetry detection using the extended Gaussian image [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 164-168.
  • 8Hilaga Masaki, Shinagawa Yoshihisa, Knhmura Take, et al. Topology matching for fully automatic similarity estimation of 3D shapes[C]//Computer Graphics Proceedings, Annual Conference Series. ACM SIGGRAPH, Los Angeles, 2001: 203-212.
  • 9D W Thompson. On Growth and Form[M]. England:Cambridge University Press, 1961.
  • 10J W H Tangelder, R C Veltkamp. A survey of content based 3D shape retrieval methods [ J ]. Multimedia Tools and Applications,2(D7,39(3) :441 - 471.

共引文献63

同被引文献41

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部