期刊文献+

基于加锁机制的静态手势识别方法 被引量:4

Static gesture recognition method based on locking mechanism
下载PDF
导出
摘要 基于RGB-D(RGB-Depth)的静态手势识别的速度高于其动态手势识别,但是存在冗余手势和重复手势而导致识别准确性不高的问题。针对该问题,提出了一种基于加锁机制的静态手势识别方法来识别运动中的手势。首先,将通过Kinect设备获取RGB数据流和Depth数据流融合成人体骨骼数据流;然后,在静态手势方法中引入加锁机制,并与之前建立好的骨骼点特征模型手势库进行比对计算;最后,设计一款"程序员进阶之路"益智类网页游戏进行应用与实验。实验验证在6种不同运动手势情况下,该方法与纯静态手势识别方法相比,平均识别准确率提高了14.4%;与动态手势识别相比,识别速度提高了14%。实验结果表明,提出的基于加锁机制的静态手势识别方法,既保留了静态识别的速率,实现了实时识别;又能很好地剔除冗余手势和重复手势,提高了识别正确性。 The static gesture recognition speed is higher than that of dynamic gesture recognition for RGB-D( RGBDepth) data, but redundancy gestures and repeated gestures lead to low recognition accuracy. In order to solve the problem, a static gesture recognition method based on locking mechanism was proposed. First, RGB data flow and the Depth data stream were obtained through Kinect equipment, then two kinds of data flow were integrated into human body skeleton data flow.Second, the locking mechanism was used to identify static gestures, and comparison and calculation were done with the established bone point feature model gesture library before. Finally, an " advanced programmers road " brain-training Web game was designed for application and experiment. In the experiments of six different movement gestures, compared with the static gesture recognition method, the average recognition accuracy of the proposed method was increased by 14. 4%;compared with the dynamic gesture recognition method, the gesture recognition speed of the proposed method was improved by14%. The experimental results show that the proposed method keeps the high speed of static recognition method, realizes the real-time recognition; and also improves the identification accuracy through eliminating redundant repeated gestures.
作者 王红霞 王坤
出处 《计算机应用》 CSCD 北大核心 2016年第7期1959-1964,共6页 journal of Computer Applications
基金 湖北省自然科学基金资助项目(2013CFB351) 中央高校基本科研业务费专项资金资助项目(2014-IV-105)~~
关键词 RGB-D KINECT 骨骼数据 手势识别 加锁机制 RGB-Depth(RGB-D) Kinect skeleton data gesture recognition locking mechanism
  • 相关文献

参考文献12

  • 1CttOI W, PANTOFARU C, SAVARESE S. A general framework for tracking multiple people from a moving camera [ J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2013, 35 (7) : 1577 - 1591.
  • 2REN Z, YUAN J, MENG J, et al. Robust hand gesture recognitionbased on finger-earth mover' s distance with a commodity depth cam- era [ C]//MM' 11: Proceedings of the 19th ACM International Con- ference on Muhimedia. New York: ACM, 2011 : 1093 - 1096.
  • 3YANG C, JANG Y, BEHETC J. Gesture recognition using depth-based hand tracking for contactless controller application [C]// ICCE 2012: Prveedings of the 2012 IEEE International Conference on Consumer E- lectronics. Piscataway, NJ: IEEE, 2012:297-298.
  • 4OSZUST M, WYSOCKI M. Polish sign language words recognition with Kinect [ C]// HSI 2013: Proceedings of the 2013 6th Interna- tional Conference on Human System Interactions. Washington, DC: IEEE Computer Society, 2013:219-226.
  • 5CHAI X, LI G, LIN Y, et al. Sign language recognition and trans- lation with Kinect [ C]// FG 2013: Proceedings of the 10th IEEE lnternation',d Conference on Automatic; Face and Gesture Recogni- tion. Washington, DC: IEEE Conlputer Society, 2013:22-26.
  • 6CHAI X, LI G, CHEN X, et al. A tool to support communication between deaf and hearing persons with the Kinect [C]// ASSETS 2013: Proceedings of the 15th International ACM SIGACCESS Con- ference on Computers and Accessibility Proceedings. New York: ACM, 2013:21 -23.
  • 7林海波,梅为林,张毅,罗元.基于Kinect骨骼信息的机械臂体感交互系统的设计与实现[J].计算机应用与软件,2013,30(2):157-160. 被引量:27
  • 8ZHAO Y, LIU Z, CHENG H. RGB-depth teature for 3D human ac- tivity recognition [J]. China Communication, 2013, 10(7): 93- 103.
  • 9WANG Y, SHI Y. Hunmn activities segmentation and location of key frames based on 313 skeleton [ C]// CCC 2014: Proceedings of the 33rd Chinese Control Conference. Washington, DC: IEEE Com- puter Society, 2014:4786-4790.
  • 10CHEN H, LIU T, GE M, et al. A depth optimization method for 2D-to-3D conversion based on RGB-D inmges [ C]// IEEE IC- N1DC 2014: Proeeedings of the 2014 4th IEEE International Con- ference on Network Infi'astructurc and Digital Content. Piscataway, NJ: IEEE, 2014:223-227.

二级参考文献11

  • 1BAJRACHARYA M, MOGHADDAM B, HOWARD A, et al. Results from a Real-Time Stereo-Based Pedestrian Detection System on a Moving Vehicle [ C]//Workshop on People Detection and Tracking. Kobe, Japan: IEEE, 2009: 38-45.
  • 2NAVARRO-SERMENT L E, MERTZ C, HEBERT M. Pedestrian Detection and Tracking Using Three-Dimensional LADAR Data [J]. The International Journal of Robotics Research, 2010, 29(12) : 1516-1528.
  • 3LUBER M, SPINELLO L, ARRAS K O. People Tracking in RGB-Data with On-Line Boosted Target Models [ C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco, CA: IEEE, 2011: 3844-3849.
  • 4SPINELLO L, ARRAS K O. People Detection in RGB-D Data [ C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (1ROS). San Francisco, CA: IEEE, 2011 : 3838-3843.
  • 5SHENGYIN W, SHIQI Y, WENSHENG C. An Attempt to Pedestrian Detection in Depth Images [ C]//2011 Third Chinese Conference on Intelligent Visual Surveillance (IVS). Beijing: IEEE, 2011: 97-100.
  • 6CHOI W, PANTOFARU C, SAVARESE S. Detecting and Tracking People Using an RGB-D Camera via Multiple Detector Fusion [ C ]//IEEE International Conference on Computer Vision Workshops ( ICCV Workshops). Barcelona: IEEE, 2011 : 1076-1083.
  • 7MITZEL D, LEIBE B. Real-Time Multi-Person Tracking with Detector Assisted Structure Propagation [ C ] //IEEE International Conference on Computer Vision Workshops (ICCV Workshops). Barcelona: IEEE, 2011 : 974-981.
  • 8FISCHLER M A, BOLIS R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography [ J ]. Communications of the ACM, 1981,24 (6) : 381-395.
  • 9DALAL N, TRIGGS B. Histograms of Oriented Gradients for Human Detection [ C ] //Computer Vision and Pattern Recognition. San Diego, CA, USA : IEEE, 2005 : 886-893.
  • 10刘伟,齐晓慧.基于视觉的机械手臂自主抓物的实现[J].兵工自动化,2008,27(12):79-80. 被引量:9

共引文献27

同被引文献30

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部