期刊文献+

基于仿生学原理的云资源自主监控系统设计与实现 被引量:2

Design and implementation of cloud resource monitoring system based on bionics
下载PDF
导出
摘要 为了解决现有监控系统因主控节点功能太过集中而导致某些时刻网络流量过大、系统扩展性差和无法及时应对节点失效的问题,提出了一种基于仿生自主神经系统(BANS)的新型云资源监控系统。首先,系统中引入了多级存储、分批上报的机制,将需要上报的监控信息分批次分时段上传汇总,使得在任何单一时刻系统内不会产生过大的流量和负载,保证了系统的稳定性;其次,系统中加入了类动态主机配置协议(DHCP)的主动发现机制以及定期轮询策略,使得系统在处理新节点加入,节点故障问题时,获得了类似仿生自主神经系统一样的自组织、自修复能力。实验结果表明,基于BANS的云资源监控系统实现了自组织与自修复的功能,并且可以有效降低系统内的通信流量,某些单一时刻能将流量降低到仅有原来的三分之一。 Concerning the problems of heavy network traffic, which is caused by the excessive load of master node, bad expansibility and poor ability to handle node failure in existing monitoring system, a novel Cloud Monitoring System based on Bionic autonomic nervous system( B-CMS) was proposed. Firstly, B-CMS imported hierarchical storage and batch-wise report mechanism to upload the monitoring information, which can decrease the network traffic at any moment to ensure monitor system's stability. In addition, the use of similar Dynamic Host Configuration Protocol( DHCP) and polling-driven heartbeat checking mechanism enabled the monitor system to get the self-organizing and self-repairing ability which is similar to Bionic Autonomic Nervous System( BANS) when adding new node and handling node failure in autonomic way. The experimental results show that B-CMS achieves self-organizing and self-repairing, and effectively decreases network traffic. In some special moment, the network traffic is only one-third of the original system.
出处 《计算机应用》 CSCD 北大核心 2016年第7期2051-2055,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61170042)~~
关键词 云计算 资源监控 仿生自主神经系统 云监控 自组织 自修复 cloud computing resource monitoring Bionic Autonomic Nervous System(BANS) cloud monitoring selforganizing self-repairing
  • 相关文献

参考文献12

  • 1MA S. A review on cloud computing development [ J]. Journal of Networks, 2012, 7(2): 305-310.
  • 2GAO J, XIAO Y, LIU J, et al. A survey of communication/networ- king in smart grids [ J]. Future Generation Computer Systems, 2012, 28(2): 391-404.
  • 3ACETO G, BOTFA A, DE DONATO W, ctal. Cloud monitoring: a survey [J]. Computer Networks, 2013, 57(9) : 2093 -2115.
  • 4MASSIE M L, CHUN B N, CULLER D E. The Ganglia distributed monitoring system: design, implementation, and experience [J]. Parallel Computing, 2004, 30(7): 817-840.
  • 5SACERDOTI F D, KATZ M J, MASSIE M L, et al. Wide area cluster monitoring with ganglia [ C]//Proceedings of the 2003 IEEE International Conference on Cluster Computing. Piscataway, NJ: IEEE, 2003:289-298.
  • 6YANG C T, CHEN T T, CHEN S Y. Implementation of monitoring and information service using Ganglia and NWS for grid resource brokers [ C]// Proceedings of the 2nd IEEE Asia-Pacific Service Computing Conference. Piscataway, NJ: IEEE, 2007:356-363.
  • 7HINCHEY M, DAI Y S, RASH J L, et al. Bionic autonomic nerv- ous system and self-healing for NASA ANTS-like missions [ C]// Proceedings of the 2007 ACM Symposium on Applied Computing. New York: ACM, 2007:90-96.
  • 8KEPHART J O, CHESS D M. The vision of autonomic computing [J]. Computer, 2003, 36(1): 41-50.
  • 9CARAFFINI F, NERI F, PICINALI L. An analysis on separability for memetic computing automatic design [ J]. Information Sciences, 2014, 265:1-22.
  • 10DROMS R. Stateless Dynamic Host Configuration Protocol (DH- CP) Service for IPv6 [ EB/OL]. [ 2015- 09- 20]. http://tools. left. org/html/ffc3736.

同被引文献26

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部