期刊文献+

基于量子行为粒子群优化的软子空间聚类算法 被引量:3

Soft Subspace Clustering Algorithm Based on Quantum-Behaved Particle Swarm Optimization
下载PDF
导出
摘要 针对软子空间聚类算法搜寻聚类中心点容易陷入局部最优的缺点,提出在软子空间聚类框架下,结合量子行为粒子群优化(QPSO)和梯度下降法优化软子空间聚类目标函数的模糊聚类算法.根据QPSO全局寻优的特点,求解子空间中全局最优中心点,利用梯度下降法收敛速度快的特点,求解样本点的模糊权重和隶属度矩阵,最终获取样本点的最优聚类结果.在UCI数据集上的实验表明,文中算法可提高聚类精度和聚类结果的稳定性. Soft subspace clustering algorithm frequently falls into local optimum during searching clustering center point. A fuzzy clustering algorithm is proposed based on the framework of soft subspace clustering, and it integrates quantum-behaved particle swarm optimization (QPSO) algorithm into gradient descent method to optimize the objective function in soft subspace clustering. By the characteristic of searching global optimum in the QPSO algorithm, global optimal center points are solved in the subspace, and then by the high convergence speed of the gradient descent method, fuzzy weights and membership degree matrices of sample points can be obtained. Finally, the optimal clustering results of sample points are obtained. Experiment is carried out on UCI dataset and the results demonstrate the improvement in accuracy as well as the stability of the clustering results of the proposed method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第6期558-566,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61373055)资助~~
关键词 模糊聚类 软子空间 量子行为粒子群优化(QPSO) 梯度下降 全局优化 Fuzzy Clustering, Soft Subspace, Quantum-Behaved Particle Swarm Optimization(QPSO), Gradient Descent, Global Optimization
  • 相关文献

参考文献24

  • 1PARSONS L, HAQUE E, LIU H. Subspace Clustering for High Dimensional Data: A Review. ACM SIGKDD Explorations Newsle- tter, 2004, 6(1) : 90-105.
  • 2Wu X D, KUMAR V, QUINLAN J R, et al. Top 10 Algorithms in Data Mining. Knowledge and Information Systems, 2008, 14( 1 ): 1-37.
  • 3AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic Sub- space Clustering of High Dimensional Data for Data Mining Applications. ACM SIGMOD Record, 1998, 27(2) : 94-105.
  • 4SOICHER L H. On Cliques in Edge-Regular Graphs. Journal of Algebra, 2015, 421: 260-267.
  • 5KURI-MORALES A, ALDANA-BOBADILLA E. Finding Irregularly Shaped Clusters Based on Entropy // Proe of the lOth Industrial Conference on Advances in Data Mining Applications and Theoreti- cal Aspects. Berlin, Germany: Springer-Verlag, 2010 : 57-70.
  • 6AGGARWAL C C, WOLF J L, YU P S, et al. Fast Algorithms forProjected Clustering. ACM SIGMOD Record, 1999, 28 (2) : 61- 72.
  • 7YANG J, WANG W, WANG H X, et al. g-Clusters: Capturing Subspace Correlation in a Large Data Set//Proc of the 18th Inter- national Conference on Data Engineering. San Jose, USA: IEEE, 2002 : 517-528.
  • 8CHAN E Y, CHING W K, NG M K, et al. An Optimization Algo- rithm for Clustering Using Weighted Dissimilarity Measures. Pattern Recognition, 2004, 37 ( 5 ) : 943-952.
  • 9JING L P, NG M K, XU J, et al. Subspaee Clustering of Text Doc- uments with Feature Weighting K-means Algorithm// Proc of the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin, Germany: Springer-Verlag, 2005: 802- 812.
  • 10GANG J, WU J H, YANG Z J. A Fuzzy Subspace Algorithm for Clustering High Dimensional Data//Proc of the 2nd International Conference on Advanced Data Mining and Applications. Berlin, Germany: Springer-Vedag, 2006 : 271-278.

同被引文献26

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部