期刊文献+

基于层范畴的正规Ω-集合范畴的cartesian闭性 被引量:1

The Property of Cartesian Closed of the Category of Normal Ω-sets Based on the Category of Sheaves
原文传递
导出
摘要 本文引入正规Ω-集合范畴的概念,研究了正规Ω-集合范畴中的幂对象,进而说明正规Ω-集合范畴是cartesian闭的。 In this paper,we introduce the conception of the category of normalΩ-sets based on the category of sheaves,and study the exponential in the category of normalΩ-sets,furthermore,we prove that the category of normalΩ-sets is a cartesian closed category.
出处 《模糊系统与数学》 CSCD 北大核心 2016年第1期58-64,共7页 Fuzzy Systems and Mathematics
基金 2014年度新疆研究生科研创新项目(XJGRI2014144)
关键词 正规Ω-集合范畴 幂对象 cartesian闭 Category of Normal Ω-sets Exponential Cartesian Closed
  • 相关文献

参考文献9

  • 1Serre J P. Faisceaux alg6briques coh6rnts[J]. The Annals of Mathematics, 1955,61 (2) :197-278.
  • 2Grothendieck A. Sur quelques points dalgebre homologique[J]. Tohoku Math, 1957,9(2) : 119-221.
  • 3Lawvere F W. Quantifiers and sheaves[C]//Actes de Congers International des Maths,Nice,1970,1,329-334.
  • 4Fourman M P, Scott D S. Sheaves and logic[Z]. Handbook of Mathematical Logic,1982.
  • 5Wagner K R. Liminf convergence in categories[J]. Throretical Computer Science,1997.
  • 6包艳玲,汤建钢.基于层范畴的Ω-集合范畴的极限[J].数学的实践与认识,2015,45(3):291-297. 被引量:3
  • 7Borceux F. Handbook of categorical algebra Volume 1-3[M]. New York :Cambridge University Press, 1994.
  • 8Birkhoff G, Lattice theory, 3rd ed.[M]. Amer. Math. Soc. Collog. Publ. ,Providenee,R. I. , 1967.
  • 9Awodey S. Category theory[M]. Oxford:Clarendonl Press,2006.

二级参考文献7

  • 1Serre J P. Faisceaux alg@briques coh@rnts[J]. The Annals of Mathematics, 1955, 61(2): 197-278.
  • 2Grothendieck A. Sur quelques points dblgobre homologique[J]. Tohoku Math, 1957, 9(2), 119-221.
  • 3Lawvere F W. Quantifiers and sheaves[C]// In Actes de Congers International des Maths, Nice 1970, 1: 329-334.
  • 4Fourman M P, Scott D S. Sheaves and Logic[J]. Handbook of Mathematical Logic, 1982.
  • 5Wagner K R. Liminf convergence in categories[J]. Throretical ComputerScience, 1997.
  • 6Francis Borceux. Handbook of Categorical Algebra Volume 1-3[M]. New York: Cambridge Uni- versity Press, 1994.
  • 7Birkhoff G. Lattice Theory[M]. Amer Math Soc Colloq Publ Providence, R.I, 1967.

共引文献2

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部