期刊文献+

非可加测度空间上Egoroff定理的伪条件 被引量:2

Pseudo-conditions for Egoroff's Theorem on Non-additive Measure Space
原文传递
导出
摘要 定义了伪条件(M)和伪Egoroff条件,证明了在非可加测度理论上伪Egoroff条件与Egoroff定理的一种伪形式等价,伪条件(M)是伪Egoroff条件的一个必要条件,以及Egoroff定理的上述伪形式是伪条件(M)的一个必要条件,从而得到了在非可加测度空间上Egoroff定理四种形式的等价条件。 The pseudo-condition(M)and the pseudo-Egoroff condition are given in this note.The necessary and sufficient conditions for the four kinds of Egoroff's theorems on non-additive measure space are got by proving the pseudo-Egoroff condition is equivalent to a pseudo form of Egoroff's theorem,and a necessary condition of the pseudo-condition(M)is the pseudo-Egoroff condition,and a necessary condition of the the above pseudo form of Egoroff's theorem is the pseudo-conditionm(M).
出处 《模糊系统与数学》 CSCD 北大核心 2016年第1期77-83,共7页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11301281) 安徽高校省级科学研究项目(KJ2012A136)
关键词 非可加测度 条件(M) 伪条件(M) EGOROFF定理 Non-additive Measure The Condition(M) The Pseudo-condition(M) Egoroff"s Theorem
  • 相关文献

参考文献12

  • 1Sugeo M. Theory of fuzzy integrals and its applications[M]. Tokyo Institute of Technology,1974.
  • 2Li J. A further investigation for Egoroff's theorem with respect to monotone set functions [J].Kybernetika, 2003, 39(6) : 753- 760.
  • 3Li J, Yasuda M. On Egoroff's theorems on finitemonotone non-additive measure space[J]. Fuzzy Sets and Systems, 2005,153(1) : 71-78.
  • 4Takahashi M, Murofushi T. New conditions for the Egoroff theorem in non-additive measure theory [C] // International Symposium on Integrated Uncertainty Management and Applications. Berlin ,Heidelberg : Spring, 2010 : 83-89.
  • 5Takahashi M, Murofushi T, Asahina S. A new necessary and sufficient condition for the Egoroff theorem in non- additive measure theory[J]. Fuzzy Sets and Systems,2014,244:34-40.
  • 6Murofushi T, Uchino K, Asahina S. Conditions for Egoroff-s theorem in non-additive measure theory[J]. Fuzzy Sets and Systems, 2004,146 (1) : 135 - 146.
  • 7Li J. Order continuous of monotone set function and convergence of measurable functions sequence [J].Applied Mathematics and Computation, 2003,135 (2) : 211 - 218.
  • 8Li J, YasudaA M. Egoroff' s theorem on monotone non-additive measure spaces [J]. International Journal ofUncertainty, Fuzziness and Knowledge-Based Systems, 2004,12 (01) : 61 - 68.
  • 9Wang Z, Klir G J. Fuzzy measure theory[M]. New York:Plenum Press, 1992.
  • 10Pap E. Null-additive set functions[M]. Dordrent :Kluwer Academic,1995.

同被引文献27

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部