期刊文献+

广义极值分布参数估计方法比较研究 被引量:1

Comparative Study on Parameter Estimation Methods of Generalized Extreme Value Distribution
下载PDF
导出
摘要 研究广义极值分布参数估计的普通矩法、普通概率权重矩法和高阶概率权重矩法。以黔北地区五家院子和江滨水文站年最大洪峰流量序列为例,选用广义极值分布,应用普通矩法、普通概率权重矩和高阶概率权重矩进行参数估计,并对各方法的拟合效果和参数估计结果进行分析比较。结果表明:与普通矩法和普通概率权重矩法相比,高阶概率权重矩法能更好的拟合洪水序列的高尾部分洪水值,可以进行洪水频率分布的参数估计。蒙特卡洛试验表明:高阶概率权重矩法计算出的不同重现期洪水设计值的SE、Bias和RMSE较小,与常用的矩法、普通概率权重矩法相比,高阶概率权重矩法具有较高的精度。 Research on parameter estimation of Generalized Extreme Value distribution based on the moment, the probability weighted moment and the higher probability weighted moments. The two examples of Wujia Yuanzi and Jiang Bin stations annual maximum flow series were analyzed by the three parameter esti- mation methods of GEV distribution, which included the moment estimation, the probability weighted moment estimation and the higher probability weighted moment estimation. The results indicate that using the higher PWMs to fit the large flood values are much better than the moment and the probability weighted moment, and we can use it to estimate the parameters of the flood frequency distribution. The Monte Carlo experiments indicate that the SE, Bias and RMSE in the design floods of different return periods which based on the higher probability weighted moments are smaller and the PWMs have higher accuracy than the moment and the probability weighted moment.
作者 肖玲 雷双超
出处 《水资源研究》 2016年第3期262-270,共9页 Journal of Water Resources Research
关键词 广义极值分布 高阶概率权重矩 普通矩法 参数估计 Generalized Extreme Value Distribution, Higher Probability Weighted Moments, Method of Moment,Parameter Estimation
  • 相关文献

参考文献11

  • 1陈子燊,刘曾美,路剑飞.广义极值分布参数估计方法的对比分析[J].中山大学学报(自然科学版),2010,49(6):105-109. 被引量:38
  • 2WANG, Q. J. Using higher probability weighted moments for flood frequency analysis. Journal of Hydrology, 1997, 194(1):95-106. http://dx.doi.org/10.1016/S0022-1694(96)03223-4.
  • 3李扬,宋松柏.高阶概率权重矩在洪水频率分析中的应用[J].水力发电学报,2013,32(2):14-21. 被引量:12
  • 4JENK1NSON, A. F. The frequency distribution of the annual maximum(or minimum)values of meteorological elements. The Quarterly Journal of the Royal Meteorological Society, 1955, 81 (348): 158-171. http ://dx.doi.org/10.1002/qj.49708134804.
  • 5COLES, S. An introduction to statistical modeling of extreme values. New York: Springer Verlag, 2001.
  • 6GREENWOOD, J. A., LANDWEHR, J. M., MATALAS, N. C. and WALLIS, J. R. Probability weighted moments: definition and relation to parameters of distribution expressible in inverse form. Water Resources Research, 1979, 15(5): 1049-1054. http ://dx.doi.org/10.1029/WR015i005p01049.
  • 7RAMACHANDRA RAO, A., HAMED, K. H. Flood frequency analysis. CRC Press, 2000.
  • 8WANG, Q. J. Unbiased estimation of probability weighted moments and partial probability weighted moments from systematic and historical flood information and their application to estimating the GEV distribution. Journal of Hydrology, 1990, 120(1-4): 115-124.
  • 9卢安平,赵林,郭增伟,葛耀君.基于Monte Carlo法的极值分布类型及其参数估计方法比较[J].哈尔滨工业大学学报,2013,45(2):88-95. 被引量:20
  • 10WANG, Q. J. Using partial probability weighted moments to fit the extreme value distributions to censored samples. Water Resources Research, 1996, 32(6): 1767-1771. http://dx.doi.org/10.1029/96WR00352.

二级参考文献45

共引文献65

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部