期刊文献+

The fabrication of hollow magnetite microspheres with a nearly 100% morphological yield and their applications in lithium ion batteries

The fabrication of hollow magnetite microspheres with a nearly 100% morphological yield and their applications in lithium ion batteries
原文传递
导出
摘要 Hollow Fe3O4(H-Fe3O4) microspheres were fabricated through a facile one-step solvothermal synthesis,which was performed in an ethylene glycol(EG)–diethylene glycol(DEG) mixed solvent using polyethylene glycol(PEG) as the stabilizer. The addition of DEG increased the viscosity of the system,which caused the Fe3O4 primary crystal to aggregate slower and the morphological yield to approach nearly 100%. The as-prepared hollow Fe3O4 microspheres show promise for application in lithium ion battery anodes and showed a reversible specific capacity of 453.3 mAh g^-1 after 50 cycles at 100 mA g^-1. Hollow Fe3O4(H-Fe3O4) microspheres were fabricated through a facile one-step solvothermal synthesis,which was performed in an ethylene glycol(EG)–diethylene glycol(DEG) mixed solvent using polyethylene glycol(PEG) as the stabilizer. The addition of DEG increased the viscosity of the system,which caused the Fe3O4 primary crystal to aggregate slower and the morphological yield to approach nearly 100%. The as-prepared hollow Fe3O4 microspheres show promise for application in lithium ion battery anodes and showed a reversible specific capacity of 453.3 mAh g^-1 after 50 cycles at 100 mA g^-1.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第6期887-890,共4页 中国化学快报(英文版)
基金 supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, No. IRT1161) Program of Science and Technology Innovation Team in Bingtuan (No. 2011CC001) the National Natural Science Foundation of China (Nos. 21263021, U1303291)
关键词 Hollow magnetite Mixed solvent Anode material Lithium ion batteries Hollow magnetite Mixed solvent Anode material Lithium ion batteries
  • 相关文献

参考文献2

二级参考文献24

  • 1J.S. Chen, L. Archer, X.W. Lou, Sn02 hollow structures and Ti02 nanosheets for lithium-ion batteries,]. Mater. Chem. 21 (2011) 9912-9924.
  • 2X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, One-pot synthesis of carbon-coated Sn02 nanocolloids with improved reversible lithium storage properties, Chem. Mater. 21 (2009) 2868-2874.
  • 3P. Meduri, E. Clark, E. Dayalan, G.U. Sumanasekera, M.K. Sunkara, Kinetically limited de-lithiation behavior of nanoscale tin-covered tin oxide nanowires. Energy Environ. Sci. 4 (2011) 1695-1699.
  • 4Y.M. Li.J.H. Li, Carbon-coated macroporous Sn2P207 as anode materials for Li-ion battery, J. Phys. Chem. C 112 (2008) 14216-14219.
  • 5N.H. Zhao, L.C. Yang, P. Zhang, et al., Polycrystalline Sn02 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries, Mater. Lett. 64 (2010) 972-975.
  • 6Z.H. Wen, Q. Wang, Q. Zhang, J. Li, In situ growth of mesoporous Sn02 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries, Adv. Funct. Mater. 17 (2007) 2772-2778.
  • 7N.H. Zhao, G.J. Wang, Y. Huang, et al., Preparation of nanowire arrays of amorphous carbon nanotube-coated single crystal Sn02, Chem. Mater. 20 (2008)2612-2614.
  • 8Y.M. Li.X.J. Lii.J. Lu.J.H. Li, Preparation of Sn02-nanocrystal/graphene-nanosheets composites and their lithium storage ability, J. Phys. Chem. C 114 (2010) 21770-21774.
  • 9S.J. Ding, D.Y. Luan, F. Boey, et al., Sn02 nanosheets grown on graphene sheets with enhanced lithium storage properties, Chem. Commun. 47 (2011) 7155-7157.
  • 10Q. Wang, Z.H. Wen, J.H. Li, Fast and reversible lithium-induced electrochemical alloying in tin-based composite oxide hierarchical microspheres assembled by nanoplate building blocks, J. Power Sources 182 (2008) 334-339.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部