期刊文献+

Venus Flytrap HKT1-Type Channel Provides for Prey Sodium Uptake into Carnivorous Plant Without Conflicting with Electrical Excitability 被引量:3

Venus Flytrap HKT1-Type Channel Provides for Prey Sodium Uptake into Carnivorous Plant Without Conflicting with Electrical Excitability
原文传递
导出
摘要 The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na^+- and K^+-permeable mutants function as ion channels rather than K^+ transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na^+-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap. The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na^+- and K^+-permeable mutants function as ion channels rather than K^+ transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na^+-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.
出处 《Molecular Plant》 SCIE CAS CSCD 2016年第3期428-436,共9页 分子植物(英文版)
关键词 sodium channel HKT1 Dionaea muscipula action potential GLANDS sodium uptake sodium channel, HKT1, Dionaea muscipula, action potential, glands, sodium uptake
  • 相关文献

参考文献1

二级参考文献10

  • 1Escalante-Perez, M. Krol, E. Stange, A. Geiger, D. AI-Rasheid, K.A.S. Hause, B. Neher, E. and Hedrich, R. (2011). A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. Proc. Natl Acad. Sci. U S A. 108, 15492-15497.
  • 2Forterre, Y. Skotheim, J.M. Dumais, J. and Mahadevan, L. (2005). How the Venus flytrap snaps. Nature. 433, 421-425.
  • 3Geiger, D. Maierhofer, T. AI-Rasheid, K.A. Scherzer, S. Mumm, R, Liese, A. Ache, P. Wellmann, C. Marten, I. Grill, E. et al. (2011). Stomatal closure by fast abscisic acid signaling is medi- ated by the guard cell anion channel SLAH3 and the receptor RCA, R1. Sci. Signal. 4, ra32.
  • 4Hedrich, R. (2012). Ion channels in plants. Physiol. Rev. 92, 1777-1811.
  • 5Hodick, D. and Sievers, A. (1988). The action-potential of Dionaea muscipula Ellis. Planta. 174, 8-18.
  • 6Imes, D. Mumm, R, Bohm, J. AI-Rasheid, K.A. Marten, I. Geiger, D,, and Hedrich, R. (2013). Open stomata 1 (OST1) kinase con- trols R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J. 74, 372-382.
  • 7Scherzer, S. Krol, E. Kreuzer, I. Kruse, J. Karl, F. yon Ruden, M. Escalante-Perez, M. Muller, T. Rennenberg, H. AI-Rasheid, K.A. et al. (2013). The Dionaea muscipula ammonium channel DreAMT1 provides NH4(+) uptake associated with Venus fly- trap's prey digestion. Curr. Biol. 23, 1649-1657.
  • 8Schulze, W.X. Sanggaard, K.W. Kreuzer, I. Knudsen, A.D. Bemm, F. Thogersen, I.B. Brautigam, A. Thomsen, L.R. Schliesky, S. Dyrlund, T.F. et al. (2012). The protein com- position of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms. Mol. Cell Proteomics. 11, 1306-1319.
  • 9Ueda, M. Tokunaga, T. Okada, M. Nakamura, Y. Takada, N. Suzuki, R. and Kondo, K. (2010). Trap-closing chemical factors of the Venus flytrap (Dionaea muscipulla Ellis). ChemBioChem. 11, 2378-2383.
  • 10Volkov, A.G. Adesina, T. Markin, V.S. and Jovanov, E. (2008). Kinetics and mechanism of Dionaea muscipu/a trap closing. Plant Physiol. 146, 694-702.

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部