期刊文献+

氧化钛薄膜调控金属铜的表面等离子体共振特性研究 被引量:2

Research on the SPR Properties of Copper Thin Film with Regulation of Titanium Dioxide
下载PDF
导出
摘要 提出了一种利用氧化钛薄膜对金属铜薄膜表面等离子体共振特性调制的想法。实验中首先使用电子束蒸发制备一批同等厚度的氧化钛薄膜,再利用磁控溅射方法在氧化钛薄膜上沉积厚度为5~80 nm不等的金属铜薄膜。测试结果表明,氧化钛膜层对不同厚度的金属铜薄膜表面等离子体共振增强具有不同调制效果,金属铜薄膜厚度小于20 m时,底层的氧化钛薄膜对Cu薄膜表面等离子体共振增强效果显著,且随着金属Xu膜层厚度增加表面等离子体共振峰发生蓝移,而当金属铜膜层的厚度超过20nm时,共振增强效果因金属Cu薄膜消光能力的上升而开始减弱。 In this paper ,we propose the surface plasmon resonance intensity modulation of the metal copper deposited on a titani-um oxide thin film .Surface plasmon resonance (SPR) has a broad application prospect in various types of detectors and sensors . We first used the electron beam evaporation to obtain TiO 2 thin films with the same thickness ,and then we prepared copper film with the thickness ranging from 5 to 80 nm with magnetron sputtering method .The results show that the TiO2 film with differ-ent thickness copper thin films own different surface plasmon resonance modulation capability .The thinner copper film shows more obvious regulation .When the copper layer thickness is more than 20 nm ,the resonance enhancement effect began to weak-en because of better extinction capability .
机构地区 上海理工大学
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第7期2027-2030,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(61378060,61205156) 国家重大科学仪器设备开发专项项目(2012YQ170004) 国家高技术研究发展计划(863计划)项目(2013AA030602) 上海市自然科学基金项目(13ZR1427800)资助
关键词 表面等离子体共振 氧化钛 吸收光谱 电场分布 Surface plasmon resonance TiO2 Copper Absorption spectrum Electric field distribution
  • 相关文献

参考文献11

  • 1Pitarke J M, Silkin V M, Chulkov E V, et al. Rep. Prog. Phys. , 2007, 70: 1.
  • 2Sehuchinsky A G. Metamaterials, 2010, 4(2): 61.
  • 3Raether Heinz. Surface Plasmons on Smooth Surface. Springer Berlin Heidelberg, 1988.
  • 4Wu I3o, et al. Computational Materials Science, 2012, 51(1): 430.
  • 5Jiri Homola, Sinclair S Yee, Giinter Gauglitzb. Sensors and Actuators B: Chemical, 1999, 54(1-2): 3.
  • 6李昌峰,洪昕,杜丹丹,边琰,张国雄.局域表面等离子体共振光谱的获取[J].电子测量技术,2007,30(8):63-64. 被引量:3
  • 7Wei Hong, Xu Hongxing. Materials Today, 2014, 17(8): 372.
  • 8Jules L Hammond, Nikhil Bhalla, Sarah D Rafiee, et al. Biosensors, 2014, 4(2) : 172.
  • 9Umebayashi T, Yamaki T, Itoh H, et al. Appl. Phys. Lett. , 2002, 81: 454.
  • 10Bansal Amit, Verma S S. AIP Advances, 2014, 4(5) : 057104.

二级参考文献7

  • 1王盛艳,李刚.CCD时序驱动电路设计[J].电子测量技术,2006,29(1):56-57. 被引量:14
  • 2屠耀华,孙懋珩.具有行-列寻址功能摄像头模块[J].电子测量技术,2006,29(1):88-89. 被引量:1
  • 3许世军,任小玲.光学镀膜仪静态特性研究[J].黑龙江大学自然科学学报,2006,23(2):272-275. 被引量:1
  • 4JASON H. Gold nanoparticles are shaped for effect [J].Laser Focus World,2006(42) : 99-101.
  • 5HAES, AMANDA J, VAN D, et al. A unified view of propagating and localized surface plasmon resonance biosensors[J]. Analytical and Bioanalytical Chemistry, 2004,379(7) :920-930.
  • 6INYA A O, DAVIES T, ELEJALDE N, et al. Surface enhanced raman spectroscopy of molecular motors[C]. Proceedings of SPIE-The International Society for Optical Engineering, 2005(5763):117-125.
  • 7ENDO, YAMAMURA T, SHOHEI, et al. EiichiLocalized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction [J]. Science and Technology of Advanced Materials, 2004(5) :491-500.

共引文献2

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部