期刊文献+

固溶后冷速对7715D钛合金室温拉伸和冲击性能的影响 被引量:1

Solid solution after cooling speed to 7715D the influence of titanium alloy at room temperature tensile and impact properties
下载PDF
导出
摘要 本文研究了7715D钛合金固溶后在四种不同的冷速(水淬、风冷、空冷和炉冷)对室温拉伸和冲击性能的影响。结果表明,随着固溶后冷速的增加,材料的屈服强度增加而塑性降低。水淬冲击韧性最低,炉冷次之,风冷较好,空冷最高。屈服强度受次生α相尺寸和数量的影响。塑性和冲击韧性受初生/等轴α界面密度、次生α相含量和尺寸影响。风冷和空冷时,初生α相界面减少和次生α相片层厚度增加(较水淬)引起的裂纹偏转是冲击韧性增加的主要原因。冲击韧性与屈服强度及塑性在一定条件下有相关性。 In this study, the influence of cooling rate(water quenching, fan cooling, air cooling and furnace cooling) after solid solution treatment on the room temperature tensile and Charpy impact properties of 7715 D titanium alloy were studied. It was found that the yield strength of the material increases with the increase of the cooling rate. The impact toughness increases in the order of water quenching, furnace cooling, fan cooling and air cooling. The yield strength is affected by the size and number of the secondary alpha phase. The ductility and impact toughness are affected by the interface density of primary alpha phase, the content and size of the secondary alpha phase. In the air cooling and air cooling conditions, the decrease of the primary alpha interfaces and the increase of the thickness of the secondary alpha are responsible for the increase of impact toughness. There is a correlation between impact toughness and yield strength and ductility under certain conditions.
作者 孙继锋 计波
出处 《世界有色金属》 2016年第6期165-167,169,共4页 World Nonferrous Metals
关键词 7715D钛合金 冷速 强度 塑性 冲击韧性 7715D titanium alloy cooling rate yield strength ductility impact toughness
  • 相关文献

参考文献4

二级参考文献24

  • 1储俊鹏,张庆玲,李兴无,沙爱学,贾栓孝,刘惠芳,王俭,魏寿庸.普通退火对TA15合金拉伸性能的影响[J].金属学报,2002,38(z1):81-83. 被引量:9
  • 2张旺峰,曹春晓,李兴无,马济民,朱知寿.β热处理TA15钛合金对力学性能的影响规律[J].稀有金属材料与工程,2004,33(7):768-770. 被引量:35
  • 3沙爱学,李兴无,储俊鹏,温国华.热处理工艺对TA15钛合金冲击性能的影响[J].稀有金属,2006,30(1):26-29. 被引量:11
  • 4韩海军,于荣莉.TC4合金静动态断裂韧性K_(IC)、K_(Id)相关性研究[J].科学技术与工程,2006,6(15):2339-2341. 被引量:3
  • 5Holmquist M, Recina V, Pettersson B. Acta Materialia Tensile and creep properties of diffusion bonded titanium alloy IMI 834 to gamma titanium aluminide IHI Alloy 01A[J]. Engineering Fracture Mechanics, 1999,47(6): 1791-1799.
  • 6Cui W F, Liu C M, Zhou L,et al. Characteristics of microstructures and second-phase particles in Y-bearing Ti-1100 alloy[J]. Materials Science and Engineering,2002, A 323(1-2):192 -197.
  • 7Han Z, Zhao H B, Chen X F, et al. Corrosion behavior of Ti-6Al-4V alloy welded by scanning electron beam[J]. Materials Science and Engineering, 2000,A277:38-45.
  • 8中国航空材料手册编辑委员会.中国航空材料手册,第4卷(第2版)[M].北京:中国标准出版社,2001.74.
  • 9黄伯云,李成功,石力开,等中国材料工程大典,第4卷(上)[M].北京:化学工业出版社,2005.566.
  • 10魏寿庸 王永强 关少轩 等.TA15钛合金大直径棒材的组织与性能.稀有金属材料与工程,2008,37(3):49-49.

共引文献28

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部