期刊文献+

A Nonlinear Diffusion Model for Image Restoration 被引量:1

A Nonlinear Diffusion Model for Image Restoration
原文传递
导出
摘要 In this paper, we study the ill posed Perona-Malik equation of image processing[14] and the regularized P-M model i.e. C-model proposed by Catte et al.[4]. The authors present the convex compound of these two models in the form of the system of partial differential equations. The weak solution for the equations is proved in detail. The additive operator splitting (AOS) algorithm for the proposed model is also given. Finally, we show some numeric experimental results on images. In this paper, we study the ill posed Perona-Malik equation of image processing[14] and the regularized P-M model i.e. C-model proposed by Catte et al.[4]. The authors present the convex compound of these two models in the form of the system of partial differential equations. The weak solution for the equations is proved in detail. The additive operator splitting (AOS) algorithm for the proposed model is also given. Finally, we show some numeric experimental results on images.
机构地区 School of Science
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第3期631-646,共16页 应用数学学报(英文版)
基金 Supported in part by the National Natural Science Foundation of China under Grant(No.11571325,No.11271126) Science Research Project of CUC under Grant No.3132016XNL1612
关键词 Perona-Malik model C-model weak solutions AOS algorithm Perona-Malik model C-model weak solutions AOS algorithm
  • 相关文献

参考文献22

  • 1Alvaxez, L., Lions, P.L., Morel, J.M. Image selective smoothing and edge detection by nonlinear diffusion I1. SIAM J. Numer. Anal., 29(3): 845-866 (1992).
  • 2Alvarez, L., Mazorra, L. Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal., 31(2): 590-605 (1994).
  • 3Aubert, G., Kornprobst, P. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Second Edition. Springer-Verlag, New York, 2006.
  • 4Catte, F., Lions, P.L., Morel, J.M., Coll, T. Image selective smoothing and edge detection by nonlinear diffusion. SlAM Journal of Numerical Analysis, 29(1): 182 193 (1992).
  • 5Cottet, G.H., E1 Ayyadi, M. A Volterra type model for image processing. IEEE Trans. Image Processing, 7(3): 292-303 (1998).
  • 6Chen, Y.M., Vemuri, B.C., Wang, L. Image denoising and and segmentation via nonlinear diffusion. In- ternational Journal Computers & Mathematics with Applications, 39(5-6): 131 149 (2000).
  • 7Chen, Y.M., Bose, P. On the incorporation of time-delay regularization into curvature-based diffusion. Journal of Mathematical Imaging and Vision, 14(2): 149-164 (2001).
  • 8Goldstein, T., osher, S. The split Bregman method for Ll-regularized problems. SIAM J. Image Sciences. 2(2): 323-343 (2009).
  • 9Kichenassamy, S. The Perona-Malik paradox. SIAM J. Appl. Math., 57(5): 1328-1342 (1997).
  • 10Krishnan, D., Lin, P., Tai, X.C. An efficient operator-splitting method for noise removal in images. Com- mun. Comput. Phys., 1(5): 847-858 (2006).

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部