期刊文献+

A compact triple-band bandpass filter based on metamaterials 被引量:1

A compact triple-band bandpass filter based on metamaterials
原文传递
导出
摘要 This paper presents a compact triple-band bandpass filter based on metamaterials. The miniaturization is realized by the principle of phase compensation of metamaterial. Compared with the conventional half-wavelength filter, the metamaterial filter has a small size of 10 mm×10 mm. The triple-band bandpass filter performance has been validated by the electromagnetic simulation software of high frequency structure simulator(HFSS). The results illustrate that the filter is designed with center frequencies of 2.4 GHz, 5.1 GHz and 8.8 GHz, bandwidths of about 7.9%(2.31—2.50 GHz), 7.8%(5.0—5.4 GHz) and 7.4%(8.50—9.15 GHz), respectively, and it shows good band pass characteristics. This paper presents a compact triple-band bandpass filter based on metamaterials. The miniaturization is realized by the principle of phase compensation of metamaterial. Compared with the conventional half-wavelength filter, the metamaterial filter has a small size of 10 mm×10 mm. The triple-band bandpass filter performance has been validated by the electromagnetic simulation software of high frequency structure simulator(HFSS). The results illustrate that the filter is designed with center frequencies of 2.4 GHz, 5.1 GHz and 8.8 GHz, bandwidths of about 7.9%(2.31—2.50 GHz), 7.8%(5.0—5.4 GHz) and 7.4%(8.50—9.15 GHz), respectively, and it shows good band pass characteristics.
出处 《Optoelectronics Letters》 EI 2016年第4期273-275,共3页 光电子快报(英文版)
基金 supported by the Key Laboratory Foundation of China Electronics Technology Group Corporation(No.ZX15ZS391) the International Science&Technology Cooperation Program of China(No.2014DFR10020) the Natural Science Foundation of Shanxi Province(Nos.2014021020-1 and 2015021083)
  • 相关文献

参考文献13

  • 1L. Pantoli, V. Stomelli and G. Leuzzi, Electronics Let- ters 52, 86 (2016).
  • 2Hao Wang, Jun-feng Huang and Chun-guang Zhang, Journal of Optoelectronics-Laser 26, 1255 (2015). (in Chinese).
  • 3Jing Guo, Kui Wu and Yong-chuan Xiao, Journal of Optoelectronics-Laser 25, 1274 (2014). (in Chinese).
  • 4M. Safari, C. Shafai and L. Shafai, IEEE Transactions on Antennas and Propagation 63, 1014 (2015 ).
  • 5L. P. Carignan, A. Yelon and D. Menard, IEEE Transac- tions on Microwave Theory and Techniques 59, 2568 (2011).
  • 6Kuang Zhang, Qun Wu and Jia-hui Fu, IEEE Transac- tions on Magnetics 48, 4289 (2012).
  • 7S. M. Rudolph and A. Grbic, IEEE Transactions on Antennas and Propagation 60, 3661 (2012).
  • 8Jia Ran, Ye-wen Zhang and Kai Fang, Realization of the Inverse Doppler Effect in Tunable Transmission Lines, IEEE 4th Asia-Pacific Conference on Antennas and Propagation, 552 (2015).
  • 9I. Aghanejad, H. Abiri and A. Yahaghi, IEEE Transac- tions on Antennas and Propagation 60, 4074 (2012).
  • 10A. K. Gorur, C. Karpuz and A. Ozek, Microwave and Optical Technology Letters 56, 2211 (2014).

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部